Shortest Paths: Bellman Ford

Review: Notation

Generic s.p. algorithm

Bellman Ford algorithm
 - analysis
 - correctness

Path:

\[p = (v_0, v_1, \ldots, v_k) \]

\[(v_i, v_{i+1}) \in E \quad 0 \leq i < k \]

\[w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}) \]

Shortest path weight from \(u \) to \(v \) is \(s(u,v) \)

\(s(u,v) \) is \(\infty \) if \(v \) is unreachable from \(u \)

\(s(u,v) \) is undefined if there is a negative cycle on some path from \(u \) to \(v \)
General Structure of S.P. Algs

Initialize: \(\text{for } v \in V : d[v] \leftarrow \infty \)
\(\Pi[v] \leftarrow \text{NIL} \)
\(d[s] \leftarrow 0 \)

Main: repeat:
- Select edge \((u,v)\) \(\text{[somehow]} \)
- if \(d[v] > d[u] + w(u,v) \):
 \[d[v] \leftarrow d[u] + w(u,v) \]
 \(\Pi[v] \leftarrow u \)

until you can't relax any more edges or you're tired or...

Complexity

Termination: Algorithm will continually relax edges when there are negative cycles present.
Comlexity

Could be exponential time with poor choice of edges.

\[T(n) = 3^2 T(n-2) \]

\[T(n) = \Theta(2^{n/2}) \]

5-minute 6.006

Here’s what I want you to remember from 6.006 five years after you graduate.

Exponential bad, Polynomial good.

\[T(n) = C_1 + C_2 T(n{-}c_3) \]

\[T(n) = C_1 + C_2 T \left(\frac{n}{c_3} \right) \]

If \(c_2 > 1 \), trouble!

Divide & Conquer

If \(c_3 > 1 \)

Divide & Conquer
Bellman-Ford \((G, w, s)\)

Initialize()
for \(i = 1\) to \(|V| - 1\)
 for each edge \((u,v) \in E\):
 Relax \((u,v)\)
for each edge \((u,v) \in E\)
do if \(d[v] > d[u] + w(u,v)\)
 then report a negative-weight cycle exists
At the end, \(d[v] = d(s, v)\), if no negative-weight cycles

![Graph Diagram]

End of pass 1
End of pass 2 (and 3 and 4)

Theorem

If $G = (V, E)$ contains no negative weight cycles, then after Bellman-Ford executes $d[v] = S(s,v)$ for all $v \in V$.

Proof:

Let $v \in V$ be any vertex.

Consider path p from s to v that is a shortest path with minimum number of edges.

Let $p: s \rightarrow v_0 \rightarrow v_1 \rightarrow \cdots \rightarrow v_k = v$.

Then $S(s,v_i) = S(s,v_{i-1}) + \omega(t_{i-1}, v_i)$.
Proof (contd.):

\[P: \hspace{1cm} S \xrightarrow{} v_0 \xrightarrow{} v_1 \xrightarrow{} v_2 \xrightarrow{} \cdots \xrightarrow{} v_k \xrightarrow{} v \]

Initially, \(d[v_0] = 0 = s(S, v_0) \) and is unchanged since no negative cycles.

After 1 pass through \(E \), we have:
\[d[v_1] = s(S, v_1) \]
\[d[v_2] = s(S, v_2) \]

" 2 passes "
\[d[v_k] = s(S, v_k) \]

" k passes "

No negative-weight cycles \(\Rightarrow p \) is simple \(\Rightarrow p \) has \(|V|-1 \) edges.

Corollary

If a value \(d[v] \) fails to converge after \(|V|-1 \) passes, there exists a negative-weight cycle reachable from \(S \).