Shortest Paths: Intro

Homework preview
Weighted graphs
General Approach
Negative edges
Optimal substructure

Motivation
Shortest way to drive from A to B
Google maps "get directions"

Formulation: Problem on a weighted graph $G(V,E)$

$W: E \rightarrow \mathbb{R}$

Two algorithms: Dijkstra $O(V \log V + E)$
assumes non-negative edge weights
Bellman Ford $O(VE)$
general algorithm
Problem Set 5

- Use Dijkstra to find shortest path from CalTech to MIT
 - See "CalTech Cannon Hack" photos @ web.mit.edu
 - See Google maps from CalTech to MIT

- Model as a weighted graph \(G(V, E), w: E \rightarrow \mathbb{R} \)
 - \(V \) = vertices (street intersections)
 - \(E \) = edges (streets, roads); directed edges (one way roads)
 - \(w(u, v) = \text{weight of edge from } u \text{ to } v \) (distance, toll)

path \(p = \langle v_0, v_1, \ldots, v_k \rangle \)

\((v_i, v_{i+1}) \in E \text{ for } 0 \leq i < k\)

\(w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1}) \)

Notation: \(v_0 \xrightarrow{p} v_k \) means \(p \) is a path
from \(v_0 \) to \(v_k \)

\((v_0)\) is a path from \(v_0 \) to \(v_0 \) of weight 0

Define: Shortest path weight from \(u \) to \(v \) as

\(\delta(u, v) = \begin{cases}
\min \{ w(p): u \xrightarrow{p} v \} & \text{if any such path exists} \\
\infty & \text{otherwise (v unreachable from u)}
\end{cases} \)
Single Source Shortest Paths

Given $G = (V, E)$, w and a source vertex s, find $\delta(s, v)$ [and the best path] from s to each $v \in V$.

Data structures:

- $d[v]$: value inside circle
 - 0 if $v = s$
 - ∞ otherwise

- $\delta(s, v)$: at end

- $d[v] \geq \delta(s, v)$ at all times,
- $d[v]$ decreases as we find better paths to v
- $\Pi[v]$: predecessor on best path to v, $\Pi[s] = \text{NIL}$

EXAMPLE

- Edges give predecessor Π relationships.
NEGATIVE-WEIGHT EDGES

- Natural in some applications (e.g., logarithms used for weights)
- Some algorithms disallow negative weight edges (e.g., Dijkstra)
- If you have negative weight edges, you might also have negative weight cycles
 \[\checkmark \]
 may make certain shortest paths undefined!

EXAMPLE

![Graph diagram]

\[B \rightarrow D \rightarrow C \] has weight \(-6 + 2 + 3 = -1 < 0\)!

Shortest path \(S \rightarrow C \) (or \(B, D, E \)) is undefined can go around \(B \rightarrow D \rightarrow C \) as many times as you like.

Shortest path \(S \rightarrow A \) is defined and has weight 2.

If negative wt edges are present, S.P. algorithm should find neg wt cycles (e.g., Bellman Ford)
General Structure of S.P. Algs (no neg cycles)

Initialize: \(\text{for } v \in V: \quad \text{d}[v] \leftarrow 0 \)

\(\text{d}[s] \leftarrow 0 \)

\(\text{\Pi}[v] \leftarrow \text{NIL} \)

Main: \(\text{repeat:} \)

Select edge \((u, v)\) \(\text{[somehow]}\)

"Relax" edge \((u, v)\)

\[\begin{align*}
\text{if } \text{d}[v] &> \text{d}[u] + w(u, v) : \\
\text{d}[v] &\leftarrow \text{d}[u] + w(u, v) \\
\text{\Pi}[v] &\leftarrow u \\
\text{until all edges have } \text{d}[v] &\leq \text{d}[u] + w(u, v)
\end{align*} \]

Complexity

Termination? (needs to be shown even w/o negative cycles)

Could be exponential time with poor choice of edges.

\[
\begin{align*}
T(0) &= 0 \\
T(n+2) &= 3 + 2T(n) \\
T(n) &= \Theta(2^{n/2})
\end{align*}
\]
Optimal Substructure

Theorem: Subpaths of shortest paths are shortest paths.

Let \(p = <v_0, v_1, \ldots, v_k> \) be a shortest path.

Let \(p_{ij} = <v_i, v_{i+1}, \ldots, v_j> \) for \(0 \leq i \leq j \leq k \).

Then \(p_{ij} \) is a shortest path.

Proof:

\[p = v_0 \xrightarrow{P_{0j}} v_i \xrightarrow{P_{ij}} v_j \xrightarrow{P_{jk}} v_k \]

If \(p_{ij} \) is shorter than \(p_{ij'} \), cut out \(p_{ij} \) and replace with \(p_{ij'} \). Result is shorter than.

Contradiction.

Triangle Inequality

Theorem: For all \(u, v, x \in X \), we have \(d(u, v) \leq d(u, x) + d(x, v) \).

Proof:

\[d(u, v) \leq d(u, x) + d(x, v) \]