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Problem 3: Constructing trees by using a
fixed library of tree patterns

We propose an algorithm based on dynamic programming that computes the answer to the problem in
0(nS + nm?) time, using 0(nm?) memory. We define S as the total number of nodes in all the
templates.

Fitting templates on the tree

According to the clarifications, the children of a node are numbered, both in templates and in the tree
that we have to build. Therefore, the following simple algorithm can check if a template’s tree T can be
overlaid on a subtree U of the original tree:

e if Tisaleaf return true

e for each child of T’s root, check that U’s root has a corresponding child, then use this algorithm
recursively to check that the subtree rooted the child of T’s root can be overlaid on the subtree
rooted at the corresponding child of U’s root

If the trees are represented using the left-child, right-sibling representation described in Section 10.4 in
CLRS, and a node’s children are ordered left-to-right in increasing order of their numbers, then the
above algorithm can check if a template tree T can be overlaid on a subtree in O(st) where sy is the
number of nodes in T. Therefore, we can check which of all the given templates can be overlaid on a
subtree in 0(S) time, where S = Y. st, as defined in the introductory section.

The algorithm above can be easily augmented so that, in case the template can be overlaid on the
subtree, the algorithm returns a list of mappings from the template tree’s leaves to the corresponding
nodes in the subtree. The modification can be done without changing the asymptotic running time:

e inthe base case, return a mapping between T’s root and U’s root
e when T has children, return the result of merging the lists returned by recursive invocations of
the algorithm on each of T’s children

Setting up the dynamic programming framework
In this section, we state that the given problem has optimal sub-structure. Based on the proof of this
statement, we design the basic dynamic programming algorithm.

Suppose the optimal solution overlays a template T, on the root, and the template is bound to
templates Ty, T, ... T, at nodes vq, Vv, ... V. The total binding energy is the sum across all i’s of the
binding energy between T, and T; plus the binding energy in the subtree rooted at v;. For each i, the
templates in the subtree rooted at v; minimize its contribution to the sum mentioned above. Otherwise,
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there would be a choice of templates for the subtree rooted at v; that would yield a lower total binding
energy, which contradicts the assumption that we are considering an optimal solution.

This suggests breaking the problem into sub-problems consisting of computing (i, j), the minimum
binding energy achievable at the subtree rooted at v; by overlapping the root of template (T}, a;, ¢;) on
the subtree’s root. We use oo to express the impossibility of achieving a solution. The solution to the
problem is min; u(r, j) where v, is the root of the given tree.

The recurrence relation to compute u(i, j) is reasonably simple, but long-winded:

e if T can be overlaid on the subtree rooted at v;:

Wip= ) min(g-a+udD)

v maps to aleafin T

o elseu(i,j) = oo

In effect, the algorithm is working its way one node at a time, and attempts to overlay all possible
template trees over the subtree rooted at the node it's working on. If the overlay is possible, then the
algorithm uses the optimal sub-structure of the problem to compute strategies for overlaying templates
on the uncovered nodes. With this insight in mind, it makes sense to set the initial conditions to
u(i,j) = 0 for every leaf v; and every possible template.

Implementation

Since we are dealing with a tree, it is easy to see that the recurrence is well-defined in light of the initial
conditions above: we have values for the tree’s leaves, and we have a way to compute u(i, j) for every
internal node using the values of u(i,j) for its children. This also suggests a very easy approach to
computing u(i, j) bottom-up: if we do a topological sort of the tree, and process nodes in reverse order,
we are guaranteed to compute u(i, j) for a node before we need it for one of the nodes above it in the
tree.

A naive implementation based on the above recurrent formula would take time proportional to
0(nS + nm?3). The first term is owed to the fact that each template tree must be checked for each
node, and the second term is obtained by analyzing the formula for u(i, ).

However, we can “shave off” a factor of m with a simple observation: min;(¢; - a; + u(k, 1)) does not

depend at all on i. So we can break up our main recurrence into the two relationships below:

G)ERED SR ()
v maps to aleafinT;

v(k,j) = mlin(cj ca; + ulk, D)

We observe that u(i, j) only needs values of v(k, j) corresponding to descendants of v; in the tree, so
we can still use our bottom-up approach to computing u(i, j), with the only modification that once we

Page 2 of 3



Victor Marius Costan 6.046 Quiz 2 Problem 3
Rec: Jeremy Fineman, 12-1pm

compute u(i,j) for a node v;, we also compute v(i,j). A straight-forward algorithm that computes
u(i,j) according to the formulas and indications above will have a running time of 0(nS + nm?) and
use 0 (nm) memory.

Reconstructing the solution
Once we know the binding energy of the optimal overlay (assuming the tree can be covered with the
given templates), we are also interested in producing the set of templates corresponding to the overlay.

Like the other dynamic problems we have studies, this problem has a simple solution recovery strategy,
assuming we store a bit of extra information:

p(k.j) = argmin(¢; - a, + u(k, )

In effect, when we compute v(k,j), we also keep track of the template associated with the minimum
value inv(k, j).

The template we use to cover the tree’s root is argmin; u(r, j) - a slight modification of the formula we
use to find the minimum overall binding energy. If we know the template we will use to cover the root
of a subtree, we can use the following algorithm to compute a covering for the entire subtree:

e if the root of our subtree has no children, stop

e overlay the template tree we use to cover the root, and obtain the nodes mapped to the leaves
of the template tree

e for each node mapped to a leaf in the template tree, use p(i,j) to find out the template that
will cover the subtree rooted there, then call this algorithm recursively with the information

The recovery algorithm proposed above has a running time of 0(nS), since it only needs to do overlay
tests in order to compute the list of nodes mapped to leaves in template trees. The correctness of the
solution recovery algorithm is rather straight-forward, as the algorithm is similar to all the other solution
recovery algorithms we have studies.

Just like with previous dynamic programming problems, memory can be traded off for running time: we
can compute the entries of p(k, j) on demand instead of storing an array. This saves the memory for p
at the cost of increasing the solution recovery running time to 0(nS + nm?), which doesn’t change the
overall asymptotic running time.

Wrapping up

The solution we propose is a straight-forward application of dynamic programming. We have already
argued for optimal sub-structure, and sub-problem overlap is reasonably obvious in our formulation. As
with most dynamic-programming solutions, the recurrence formulas (specified above) are the core of
the algorithm.
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