
Handout 20: Quiz 2 Solutions 10

Problem 3. Constructing trees by using a fixed library of tree patterns
A tree template is a triple (T, a, c), where T represents a small tree and a and c are non-negative
real numbers that describe the “bonding parameters” of T . Figure 3 gives an example of a set of
six templates and an overlay of an example tree.

Figure 3: A set with 6 templates together with an overlay of an example tree. Notice that even
though templates 1 and 2 are one another’s mirror images, they have different parameters.

Given a set of templates and an arbitrary input tree, we want to compute an “optimal overlay” of
the input tree by using the set of templates. An overlay of a tree Z by using a set S of templates is
a collection of templates (T1, a1, c1) ∈ S, (T2, a2, c2) ∈ S, (T3, a3, c3) ∈ S, . . ., (Tk, ak, ck) ∈ S
together with a mapping from the vertices of T1, T2, T3, . . . , Tk to the vertices of Z such that:

1.If (u, v) is an edge in one of the templates Ti, then u and v map to an edge in Z. In other
words, around the images of u and v, Z looks like Ti; that is, the mapping preserves the
structure of each of the templates Ti. Figure 3 depicts an example of an overlay.

2.For each template Ti, if the root of Ti is mapped to a vertex x in Z, then either x is the root of
Z or x is the image of exactly one leaf of exactly one of the other templates Tj . In the second



Handout 20: Quiz 2 Solutions 11

case, x is called a bonding spot and the bonding energy at x between Ti and Tj is equal to ai

times cj . For example in Figure 3, at bonding spot B the bonding energy between template 6
with a = 2 and template 1 with c = 3 is equal to 2 · 3 = 6.

The bonding energy of an overlay is the sum of the bonding energy of all of its bonding spots.

You need to design an efficient algorithm that takes a set of m templates and a tree with n nodes as
input and computes whether an overlay of the tree exists. If an overlay exists, then the algorithm
should return an overlay of the tree for which the sum of all bonding energies is minimized. As-
sume that, for each template, the number of leaves is at most the total number (m) of templates.
Analyze the running time of your algorithm in n and m. Partial credit will be given for algorithms
that assume that c = 1 for each template.

Solution: Our solution uses dynamic programming. Let {(Ti, ai, ci) : 1 ≤ i ≤ m} be the set of
templates. For each node x in Z, let costi(x) minimize the bonding energy of the layouts of the
subtree of Z rooted in x that contain template Ti and map its root to x. If no such layout exists
then costi(x) = ∞. Let leavesi(x) be the set of vertices in Z that are the images of the leaves of
Ti. Then

costi(x) =
∑

l∈leavesi(x)

min
1≤j≤m

(costj(l) + ajci).

This recurrence relationship leads to a straightforward dynamic programming solution. For each of
the n nodes in the tree we need to evaluate the recurrence which costs O(m2) (by our assumption
leavesi(x) has size at most m). This gives a running time of O(nm2).

By defining
cost′i(x) = min

1≤j≤m
(ajci + costj(x))

we obtain the recurrence

cost′i(x) = min
1≤j≤m

(ajci +
∑

l∈leavesj(x)

cost′j(l)).

This recurrence leads to an O(nm2) dynamic programming solution as well.


