
6.006 Recitation
Build 2008.16

Coming up next...

• Sorting

• Scenic Tour: Insertion Sort, Selection
Sort, Merge Sort

• New Kid on the Block: Merge Sort

• Priority Queues

• Heap-Based Implementation

Sorting

• Input: array a of N keys

• Output: a permutation as of a such that
as[k] < as[k+1]

• Stable sorting:

Sorting

• Maybe the oldest problem in CS

• Reflects our growing understanding of
algorithm and data structures

• Who gives a damn?

• All those database tools out there

Sorting Algorithms:
Criteria

What Why

Speed That’s what 6.006 is about

Auxiliary
Memory

External sorting, memory isn’t
that cheap

Simple Method You’re learning / coding /
debugging / analyzing it

comparisons,
data moving

Keys may be large (strings) or
slow to move (flash memory)

Insertion Sort

• Base: a[0:1] has 1
element ⇒ is sorted

• Induction: a[0:k] is
sorted, want to grow to
a[0:k+1] sorted

• find position of a[k+1]
in a[0:k]

• insert a[k+1] in a[0:k]

5 8 2 7 1 4 3 6

5 8 2 7 1 4 3 6

2 5 8 7 1 4 3 6

2 5 7 8 1 4 3 6

1 2 5 7 8 4 3 6

1 2 4 5 7 8 3 6

1 2 4 5 7 8 3 6

1 2 3 4 5 6 7 8

Insertion Sort: Costs
• Find position for a[k+1]

in a[0:k] - O(log(k))

• use binary search

• Insert a[k+1] in a[0:k]:
O(k)

• shift elements

• Total cost: O(N⋅log(N))
+ O(N2) = O(N2)

• Pros:

• Optimal number of
comparisons

• O(1) extra memory
(no auxiliary arrays)

• Cons:

• Moves elements
around a lot

Selection Sort

• Base case: a[0:0] has the
smallest 0 elements in a

• Induction: a[0:k] has the
smallest k elements in a,
sorted; want to expand
to a[k+1]

• find min(a[k+1:N])

• swap it with a[k+1]

5 8 2 7 1 4 3 6

1 8 2 7 5 4 3 6

1 2 8 7 5 4 3 6

1 2 3 7 5 4 8 6

1 2 3 4 5 7 8 6

1 2 3 4 5 7 8 6

1 2 3 4 5 6 8 7

1 2 3 4 5 6 7 8

Selection Sort: Costs
• find minimum in

a[k+1:N]) - O(N-k)

• scan every element

• swap with a[k] - O(1)

• need help for this?

• Total cost: O(N2) +
O(N) = O(N2)

• Pros:

• Optimal in terms of
moving data around

• O(1) extra memory
(no auxiliary arrays)

• Cons:

• Compares a lot

Merge-Sort
1. Divide

• Break into 2 sublists

2. Conquer

• 1-elements lists are
sorted

3. Profit

• Merge sorted sublists

5 8 2 7 1 4 3 6

5 8 2 7 1 4 3 6

5 8 2 7 1 4 3 6

2 5 7 8 1 3 4 6

1 2 3 4 5 6 7 8

There is no step 6

There is no step 7

There is no step 8

Merge-Sort: Cost
• You should be ashamed

of if you don’t know!

• T(N) = 2T(N/2) + Θ(N)

• Recursion tree

• O(log(N)) levels,
O(N) work / level

• Total cost: O(N⋅log(N))

• Pros:

• Optimal number of
comparisons

• Fast

• Cons:

• O(N) extra memory
(for merging)

BST Sort

• Build a BST out of the
keys

• Use inorder traversal to
obtain the keys in sorted
order

• Or go to minimum(),
then call successor()
until it returns None

5

2 7

41 8

3

6

BST Sort: Cost
• Building the BST -

O(N⋅log(N))

• Use a balanced tree

• Traversing the BST -
O(N)

• Even if not balanced

• Total cost: O(N⋅log(N))

• Pros:

• Fast (asymptotically)

• Cons:

• Large constant

• O(N) extra memory
(left/right pointers)

• Complex code

Best of Breed Sorting

Speed O(N⋅log(N))

Auxiliary Memory O(1)

Code complexity Simple

Comparisons O(N⋅log(N))

Data movement O(N)

Heap-Sort

Speed O(N⋅log(N)) ✓

Auxiliary Memory O(1) ✓

Code complexity Simple ✓

Comparisons O(N⋅log(N)) ✓

Data movement O(N) ✗

Heap-Sort uses a...
Heap (creative, eh?)

• Max-Heap DT

• Almost complete
binary tree

• Root node’s key >=
its children’s keys

• Subtrees rooted at
children are
Max-Heaps as well

8

5 7

13 6

2

4

Max-Heap Properties
• Very easy to find max.

value

• look at root, doh

• Unlike BSTs, it’s very
hard to find any other
value

• 6 (3rd largest key) at
same level as 1 (min.
key)

8

5 7

13 6

2

4

Heaps Inside Arrays

• THIS IS WHY HEAPS
ROCK OVER BSTs

• No need to store a
heap as a binary tree
(left, right, parent
pointers)

• Store keys inside array, in
level-order traversal

8

5 7

13 6

2

4

1

2 3

4 5 6 7

8

1 2 3 4 5 6 7 8
8 5 7 3 1 4 6 2

Heaps Inside Arrays

• Work with arrays, think
in terms of trees

• Left subtree of 8 is in
bold... pretty mind-
boggling, eh?

• Prey that you don’t
have to debug this

8

5 7

13 6

2

4

1

2 3

4 5 6 7

8

1 2 3 4 5 6 7 8
7 5 8 3 1 4 6 2

Heaps Inside Arrays
• root index: 1

• left_child(node_index):

• node_index⋅2

• right_child(node_index):

• node_index⋅2 + 1

• parent(node_index):

• ⎣ node_index / 2⎦

1

2 3

4 5 6 7

8 9 10 11

Heaps Inside Arrays

• How to recall this

1. draw the damn heap
(see right)

2. remember the
concept (divide /
multiply by 2)

3. work it out with the
drawing

1

2 3

4 5 6 7

8 9 10 11

Heaps Inside Arrays:
Python Perspective

• Lists are the closest
thing to array

• Except they grow

• Just like our growing
hashes

• Amortized O(1) per
operation

1 2 3 4 5 6 7 8
7 5 8 3 1 4 6 2

Messing with Heaps

• Goal:

1. Change any key

2. Restore Max-Heap
invariants

15

11 10

86 1

2

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps:
Percolate

• Issue

• key’s node becomes
smaller than children

• only possible after
decreasing a key

• Solution

• percolate (huh??)

0

11 10

86 1

2

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps:
Percolate

• Percolate:

• swap node’s key with
max(left child key,
right child key)

• Max-Heap restored
locally

• the child we didn’t
touch still roots a
Max-Heap

11

0 10

86 1

2

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps:
Percolate

• Percolate

• Issue: swapping
decreased the key of
the child touched

• child might not
root a Max-Heap

• Solution: keep
percolating

11

8 10

06 1

2

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps:
Percolate

• Percolating is finite:

• leaves are always
Max-Heaps

• Percolate cost:

• O(heap height -
node’s level)

• O(log(N) - log(node))

11

8 10

56 1

2

9

1

2 3

4 5 6 7

8
4

9

3
10

0
11

Messing with Heaps: Sift

• Issue

• key’s node becomes
larger than parent

• only possible after
increasing a key

• Solution

• sift (huh??)

15

11 10

86 1

19

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps: Sift

• Sift

• swap node’s key with
parent’s key

• parent’s key was >=
node’s key, so must be
>= children keys

• Max-Heap restored
for node’s subtree

15

11 10

819 1

6

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps: Sift

• Sift

• Issue: swapping
increased the key of
the parent

• parent might not
root a Max-Heap

• Solution: keep sifting

15

19 10

811 1

6

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps: Sift

• Sifting is finite:

• root has no parent, so
it can be increased at
will

• Sift cost:

• O(height)

• O(log(node))

19

15 10

811 1

6

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps

• Update(node, new_key)

• old_key ← heap[node].key

• heap[node].key ← new_key

• if new_key < old_key: sift(node)

• else: percolate(node)

Messing with Heaps II
• Goal

• Want to shrink or
grow the heap

• Growing:

• inserting keys

• Shrinking:

• deleting keys

19

15 10

811 1

6

9

1

2 3

4 5 6 7

8
4

9

3
10

5
11

Messing with Heaps II:
One More Node

• Can always insert -∞ at
the end of the heap

• Max-Heap will not be
violated

• Can only add to the
end, otherwise we
wouldn’t get an
(almost) complete
binary tree

19

15 10

811 1

6

9

1

2 3

4 5 6

8
-∞

9

-∞

10
-∞

11

Messing with Heaps II:
One More Node

• Insert any key

• insert -∞ at the
end of the heap

• change node’s key
to desired key

• sift

19

16 10

1511 1

6

9

1

2 3

4 5 6

8
4

9

3
10

8

11

Messing with Heaps II:
One More Node

• Insertion cost

• insert -∞ at the end
of the heap - O(1)

• change node’s key to
new key - O(1)

• sift - O(log(N))

• Total cost: O(log(N))

19

16 10

1511 1

6

9

1

2 3

4 5 6

8
4

9

3
10

8

11

Messing with Heaps II:
One More Less Node
• Can always delete last

node

• Max-Heap will not be
violated

• It must be the last
node, otherwise the
binary tree won’t be
(almost) complete

19

15 10

811 9

1

2 3

4 5 6

1

7

6

8
4

9

3
10

5
11

Messing with Heaps II:
One More Less Node

• Deleting root

• Replace root key with
last key

• Delete last node

• Percolate

15

11 10

86 9

1

2 3

4 5 6

1

7

5

8
4

9

3
10

19

11

Messing with Heaps II:
One More Less Node
• Deleting root cost

• Replace root key with
last key - O(1)

• Delete last - O(1)

• Percolate - O(log(N))

• Total cost: O(log(N))

15

11 10

86 9

1

2 3

4 5 6

1

7

5

8
4

9

3
10

19

11

Messing with Heaps II:
One More Less Node

• Deleting any node

• Change key to +∞

• Sift

• Delete root

15

11 10

86 9

1

2 3

4 5 6

1

7

5

8
4

9

3
10

Messing with Heaps II:
One More Less Node
• Deletion cost

• Change key to +∞ -
O(1)

• Sift - O(log(N))

• Remove root -
O(log(N))

• Total cost: O(log(N))

15

11 10

86 9

1

2 3

4 5 6

1

7

5

8
4

9

3
10

Heap-Sort: Everything
Falls Into Place

• Start with empty heap

• Build the heap: insert a[0] ... a[N-1]

• Build the result: delete root until heap is
empty, gets keys sorted in reverse order

• Use a to store both the array and the heap
(explained in lecture)

Heap-Sort: Slightly
Faster

• Build the heap faster: Max-Heapify

• Explained in lecture

• O(N) instead of O(N⋅log(N))

• Total time for Heap-Sort stays O(N⋅log(N))
because of N deletions

• Max-Heapify is very useful later

Priority Queues

• Data Structure

• insert(key) : adds to the queue

• max() : returns the maximum key

• delete-max() : deletes the max key

• delete(key) : deletes the given key

• optional (only needed in some apps)

Priority Queues with
Max-Heaps

• Doh? (assuming you paid attention so far)

• Costs (see above line for explanations)

• insert: O(log(N))

• max: O(1)

• delete-max: O(log(N))

• delete: O(log(N)) - only if given the index
of the node containing the key

Cool / Smart Problem

• Given an array a of numbers, extract the k
largest numbers

• Want good running time for any k

Cool / Smart Problem

• Small cases:

• k = 1: scan through the array, find N

• k small

• try to scale the scan

• getting to O(kN), not good

Cool / Smart Problem

• Solution: Heaps!

• build heap with Max-Heapify

• delete root k times

• O(k⋅log(N))

• Bonus Solution: Selection Trees (we’ll come
back to this if we have time)

Discussion: Priority
Queue Algorithms

• BSTs

• store keys in a BST

• Regular Arrays

• store keys in an array

• Arrays of Buckets

• a[k] stores a list of keys with value k

And we’re done!

• costan@mit.edu

• (617) 230-9694, no voicemail

• AIM: victorcostan

• Google Talk: costan@gmail.com

• 32G-8th Floor

mailto:costan@mit.edu
mailto:costan@mit.edu
mailto:costan@gmail.com
mailto:costan@gmail.com

v. Next

• Get sleep (unmitigated disaster)

• Definitely can’t teach both heaps and
sorting

• Convert heaps to a problem, since they
should know the basics from lecture

• Make sorting shorter

