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Coming up next...

• Sorting

• Scenic Tour: Insertion Sort, Selection 
Sort, Merge Sort

• New Kid on the Block: Merge Sort

• Priority Queues

• Heap-Based Implementation



Sorting

• Input: array a of N keys

• Output: a permutation as of a such that 
as[k] < as[k+1]

• Stable sorting: 



Sorting

• Maybe the oldest problem in CS

• Reflects our growing understanding of 
algorithm and data structures

• Who gives a damn?

• All those database tools out there



Sorting Algorithms: 
Criteria

What Why

Speed That’s what 6.006 is about

Auxiliary 
Memory

External sorting, memory isn’t 
that cheap

Simple Method You’re learning / coding / 
debugging / analyzing it

# comparisons, 
data moving

Keys may be large (strings) or 
slow to move (flash memory)



Insertion Sort

• Base: a[0:1] has 1 
element ⇒ is sorted

• Induction: a[0:k] is 
sorted, want to grow to 
a[0:k+1] sorted

• find position of a[k+1] 
in a[0:k]

• insert a[k+1] in a[0:k]

5 8 2 7 1 4 3 6

5 8 2 7 1 4 3 6

2 5 8 7 1 4 3 6

2 5 7 8 1 4 3 6

1 2 5 7 8 4 3 6

1 2 4 5 7 8 3 6

1 2 4 5 7 8 3 6

1 2 3 4 5 6 7 8



Insertion Sort: Costs
• Find position for a[k+1] 

in a[0:k] - O(log(k))

• use binary search

• Insert a[k+1] in a[0:k]: 
O(k)

• shift elements

• Total cost: O(N⋅log(N)) 
+ O(N2) = O(N2)

• Pros:

• Optimal number of 
comparisons

• O(1) extra memory 
(no auxiliary arrays)

• Cons:

• Moves elements 
around a lot



Selection Sort

• Base case: a[0:0] has the 
smallest 0 elements in a

• Induction: a[0:k] has the 
smallest k elements in a, 
sorted; want to expand 
to a[k+1]

• find min(a[k+1:N])

• swap it with a[k+1]

5 8 2 7 1 4 3 6

1 8 2 7 5 4 3 6

1 2 8 7 5 4 3 6

1 2 3 7 5 4 8 6

1 2 3 4 5 7 8 6

1 2 3 4 5 7 8 6

1 2 3 4 5 6 8 7

1 2 3 4 5 6 7 8



Selection Sort: Costs
• find minimum in

a[k+1:N]) - O(N-k)

• scan every element

• swap with a[k] - O(1)

• need help for this?

• Total cost: O(N2) + 
O(N) = O(N2)

• Pros:

• Optimal in terms of 
moving data around

• O(1) extra memory 
(no auxiliary arrays) 

• Cons:

• Compares a lot



Merge-Sort
1. Divide

• Break into 2 sublists

2. Conquer

• 1-elements lists are 
sorted

3. Profit

• Merge sorted sublists

5 8 2 7 1 4 3 6

5 8 2 7 1 4 3 6

5 8 2 7 1 4 3 6

2 5 7 8 1 3 4 6

1 2 3 4 5 6 7 8

There is no step 6

There is no step 7

There is no step 8



Merge-Sort: Cost
• You should be ashamed 

of if you don’t know!

• T(N) = 2T(N/2) + Θ(N)

• Recursion tree

• O(log(N)) levels, 
O(N) work / level

• Total cost: O(N⋅log(N))

• Pros:

• Optimal number of 
comparisons

• Fast

• Cons:

• O(N) extra memory 
(for merging)



BST Sort

• Build a BST out of the 
keys

• Use inorder traversal to 
obtain the keys in sorted 
order

• Or go to minimum(), 
then call successor() 
until it returns None

5

2 7

41 8

3
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BST Sort: Cost
• Building the BST - 

O(N⋅log(N))

• Use a balanced tree

• Traversing the BST - 
O(N)

• Even if not balanced

• Total cost: O(N⋅log(N))

• Pros:

• Fast (asymptotically)

• Cons:

• Large constant

• O(N) extra memory 
(left/right pointers)

• Complex code



Best of Breed Sorting

Speed O(N⋅log(N))

Auxiliary Memory O(1)

Code complexity Simple

Comparisons O(N⋅log(N))

Data movement O(N)



Heap-Sort

Speed O(N⋅log(N)) ✓

Auxiliary Memory O(1) ✓

Code complexity Simple ✓

Comparisons O(N⋅log(N)) ✓

Data movement O(N) ✗



Heap-Sort uses a... 
Heap (creative, eh?)

• Max-Heap DT

• Almost complete 
binary tree

• Root node’s key >= 
its children’s keys

• Subtrees rooted at 
children are
Max-Heaps as well

8

5 7

13 6

2

4



Max-Heap Properties
• Very easy to find max. 

value

• look at root, doh

• Unlike BSTs, it’s very 
hard to find any other 
value

• 6 (3rd largest key) at 
same level as 1 (min. 
key)

8

5 7

13 6

2

4



Heaps Inside Arrays

• THIS IS WHY HEAPS 
ROCK OVER BSTs

• No need to store a 
heap as a binary tree 
(left, right, parent 
pointers)

• Store keys inside array, in 
level-order traversal

8

5 7

13 6

2

4

1

2 3

4 5 6 7

8

1 2 3 4 5 6 7 8
8 5 7 3 1 4 6 2



Heaps Inside Arrays

• Work with arrays, think 
in terms of trees

• Left subtree of 8 is in 
bold... pretty mind-
boggling, eh?

• Prey that you don’t 
have to debug this

8

5 7

13 6

2

4
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2 3

4 5 6 7

8

1 2 3 4 5 6 7 8
7 5 8 3 1 4 6 2



Heaps Inside Arrays
• root index: 1

• left_child(node_index):

• node_index⋅2

• right_child(node_index):

• node_index⋅2 + 1

• parent(node_index):

• ⎣ node_index / 2⎦

1

2 3

4 5 6 7

8 9 10 11



Heaps Inside Arrays

• How to recall this

1. draw the damn heap 
(see right)

2. remember the 
concept (divide / 
multiply by 2)

3. work it out with the 
drawing

1

2 3

4 5 6 7

8 9 10 11



Heaps Inside Arrays: 
Python Perspective

• Lists are the closest 
thing to array

• Except they grow

• Just like our growing 
hashes

• Amortized O(1) per 
operation 

1 2 3 4 5 6 7 8
7 5 8 3 1 4 6 2



Messing with Heaps

• Goal:

1. Change any key

2. Restore Max-Heap 
invariants
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Messing with Heaps: 
Percolate

• Issue

• key’s node becomes 
smaller than children

• only possible after 
decreasing a key

• Solution

• percolate (huh??)
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Messing with Heaps: 
Percolate

• Percolate:

• swap node’s key with 
max(left child key, 
right child key)

• Max-Heap restored 
locally

• the child we didn’t 
touch still roots a 
Max-Heap
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Messing with Heaps: 
Percolate

• Percolate

• Issue: swapping 
decreased the key of 
the child touched

• child might not 
root a Max-Heap

• Solution: keep 
percolating
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Messing with Heaps: 
Percolate

• Percolating is finite:

• leaves are always 
Max-Heaps

• Percolate cost:

• O(heap height - 
node’s level)

• O(log(N) - log(node))
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Messing with Heaps: Sift

• Issue

• key’s node becomes 
larger than parent

• only possible after 
increasing a key

• Solution

• sift (huh??)
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Messing with Heaps: Sift

• Sift

• swap node’s key with 
parent’s key

• parent’s key was >= 
node’s key, so must be 
>= children keys

• Max-Heap restored 
for node’s subtree
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Messing with Heaps: Sift

• Sift

• Issue: swapping 
increased the key of 
the parent

• parent might not 
root a Max-Heap

• Solution: keep sifting
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Messing with Heaps: Sift

• Sifting is finite:

• root has no parent, so 
it can be increased at 
will

• Sift cost:

• O(height)

• O(log(node))
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Messing with Heaps

• Update(node, new_key)

• old_key ← heap[node].key

• heap[node].key ← new_key

• if new_key < old_key: sift(node)

• else: percolate(node)



Messing with Heaps II
• Goal

• Want to shrink or 
grow the heap

• Growing:

• inserting keys

• Shrinking:

• deleting keys
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Messing with Heaps II: 
One More Node

• Can always insert -∞ at 
the end of the heap

• Max-Heap will not be 
violated

• Can only add to the 
end, otherwise we 
wouldn’t get an 
(almost) complete 
binary tree
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Messing with Heaps II: 
One More Node

• Insert any key

• insert -∞ at the 
end of the heap

• change node’s key 
to desired key

• sift  
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Messing with Heaps II: 
One More Node

• Insertion cost

• insert -∞ at the end 
of the heap - O(1)

• change node’s key to 
new key - O(1)

• sift - O(log(N))

• Total cost: O(log(N))
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Messing with Heaps II: 
One More Less Node
• Can always delete last 

node

• Max-Heap will not be 
violated

• It must be the last 
node, otherwise the 
binary tree won’t be 
(almost) complete
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Messing with Heaps II: 
One More Less Node

• Deleting root

• Replace root key with 
last key

• Delete last node

• Percolate
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Messing with Heaps II: 
One More Less Node
• Deleting root cost

• Replace root key with 
last key - O(1)

• Delete last - O(1)

• Percolate - O(log(N))

• Total cost: O(log(N))
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Messing with Heaps II: 
One More Less Node

• Deleting any node

• Change key to +∞

• Sift

• Delete root
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Messing with Heaps II: 
One More Less Node
• Deletion cost

• Change key to +∞ - 
O(1)

• Sift - O(log(N))

• Remove root - 
O(log(N))

• Total cost: O(log(N))
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Heap-Sort: Everything 
Falls Into Place

• Start with empty heap

• Build the heap: insert a[0] ... a[N-1]

• Build the result: delete root until heap is 
empty, gets keys sorted in reverse order

• Use a to store both the array and the heap 
(explained in lecture)



Heap-Sort: Slightly 
Faster

• Build the heap faster: Max-Heapify

• Explained in lecture

• O(N) instead of O(N⋅log(N))

• Total time for Heap-Sort stays O(N⋅log(N)) 
because of N deletions

• Max-Heapify is very useful later



Priority Queues

• Data Structure

• insert(key) : adds to the queue

• max() : returns the maximum key

• delete-max() : deletes the max key

• delete(key) : deletes the given key

• optional (only needed in some apps)



Priority Queues with 
Max-Heaps

• Doh? (assuming you paid attention so far)

• Costs (see above line for explanations)

• insert: O(log(N))

• max: O(1)

• delete-max: O(log(N))

• delete: O(log(N)) - only if given the index 
of the node containing the key



Cool / Smart Problem

• Given an array a of numbers, extract the k 
largest numbers

• Want good running time for any k



Cool / Smart Problem

• Small cases:

• k = 1: scan through the array, find N

• k small

• try to scale the scan

• getting to O(kN), not good



Cool / Smart Problem

• Solution: Heaps!

• build heap with Max-Heapify

• delete root k times

• O(k⋅log(N))

• Bonus Solution: Selection Trees (we’ll come 
back to this if we have time)



Discussion: Priority 
Queue Algorithms

• BSTs

• store keys in a BST

• Regular Arrays

• store keys in an array

• Arrays of Buckets

• a[k] stores a list of keys with value k



And we’re done!

• costan@mit.edu

• (617) 230-9694, no voicemail

• AIM: victorcostan

• Google Talk: costan@gmail.com

• 32G-8th Floor

mailto:costan@mit.edu
mailto:costan@mit.edu
mailto:costan@gmail.com
mailto:costan@gmail.com


v. Next

• Get sleep (unmitigated disaster)

• Definitely can’t teach both heaps and 
sorting

• Convert heaps to a problem, since they 
should know the basics from lecture

• Make sorting shorter


