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Coming up next...

• Open addressing

• Karp-Rabin

• coming back from the dead to hunt us



Open Addressing

• Goal: use nothing but the table

• Hoping for less code, better caching

• Hashing ⇒ we must handle collisions

• Solution: try another location



Easy Collision handling
• h(x) = standard hash 

function

• if T[h(x)] is taken

• try T[h(x)+1]

• then T[h(x) + 2]

• then T[h(x) + 3]

• just like parking a car

0 taken
1
2 taken
3

h(29) ➙ 4 taken
h(29) + 1 ➙

))
5 taken

h(29) + 2 ➙
))

6 taken
h(29) + 3 ➙ 7 here ☺

8
9 taken



Collision Handling: 
Abstracting it Up

• h(k) grows up to H(k, i) 
where i is the attempt 
number

• first try T[H(k, 0)]

0 taken
1 taken
2 taken
3 taken
4 taken
5 taken
6 taken
7 taken
8 taken

H(29, 0) ➙ 9 taken



Collision Handling: 
Abstracting it Up

• h(k) grows up to H(k, i) 
where i is the attempt 
number

• first try T[H(k, 0)]

• then T[H(k, 1)]

0 taken
H(29, 1) ➙ 1 taken

2 taken
3 taken
4 taken
5 taken
6 taken
7 taken
8 taken

H(29, 0) ➙ 9 taken



Collision Handling: 
Abstracting it Up

• h(k) grows up to H(k, i) 
where i is the attempt 
number

• first try T[H(k, 0)]

• then T[H(k, 1)]

• then T[H(k, 2)]

0 taken
H(29, 1) ➙ 1 taken

2 taken
3 taken

H(29, 2) ➙ 4 taken
5 taken
6 taken
7 taken
8 taken

H(29, 0) ➙ 9 taken



Collision Handling: 
Abstracting it Up

• h(k) grows up to H(k, i) 
where i is the attempt 
number

• first try T[H(k, 0)]

• then T[H(k, 1)]

• then T[H(k, 2)]

• stop after trying all

H(29, 3) ➙ 0 taken
H(29, 1) ➙ 1 taken
H(29, 4) ➙ 2 taken
H(29, 9) ➙ 3 taken
H(29, 2) ➙ 4 taken
H(29, 5) ➙ 5 taken
H(29, 6) ➙ 6 taken
H(29, 7) ➙ 7 taken
H(29, 8) ➙ 8 taken
H(29, 0) ➙ 9 taken



Collision Handling: 
Abstracting it Up

• H(k) =
<H(k, 0), H(k, 1), H(k, 
2) ... >

• Linear probing, h(29) = 
4, Hlinear(29) = ?

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>

• General properties?

H(29, 3) ➙ 0 taken
H(29, 1) ➙ 1 taken
H(29, 4) ➙ 2 taken
H(29, 9) ➙ 3 taken
H(29, 2) ➙ 4 taken
H(29, 5) ➙ 5 taken
H(29, 6) ➙ 6 taken
H(29, 7) ➙ 7 taken
H(29, 8) ➙ 8 taken
H(29, 0) ➙ 9 taken



Collision Handling: 
Abstracting it Up

• Any collision handling strategy comes to:

• for key k, probe H(k,0), then H(k,1) etc.

• No point in trying the same place twice

• Probes should cover the whole table 
(otherwise we raise ‘table full’ prematurely)

• Conclusion: H(k, 0), H(k, 1) ... H(k, m-1) are 
a permutation of {1, 2, 3 ... m}



Linear Probing and 
Permutations

• h(29) = 4; H(29) =

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>

• h(k) = h0(mod m); H(k) =

<h0 mod m, (h0 + 1) mod 
m, (h0 + 2) mod m,  ... 
(h0 + m - 1) mod m >

• m permutations (max m!)

0 taken
1
2 taken
3

h(29) ➙ 4 taken
h(29) + 1 ➙

))
5 taken

h(29) + 2 ➙
))

6 taken
h(29) + 3 ➙ 7 here ☺

8
9 taken



Ideal Collision Handling

• Simple Hashing (collision by chaining)

• Ideal hashing function: uniformly 
distributes keys across hash values

• Open Addressing

• Ideal hashing function: uniformly 
distributes keys across permutations

• a.k.a. uniform hashing



Uniform Hashing: 
Achievable?

• Simple mapping between 
permutations of m and 
numbers 1 ... m!

• Convert key to big 
number, then use 
permutation number 
(bignum mod m!)

• ... right?

k mod 6 Permutation

0 <1, 2, 3>

1 <1, 3, 2>

2 <2, 1, 3>

3 <2, 3, 1>

4 <3, 1, 2>

5 <3, 2, 1>



Uniform Hashing: 
Achievable?

• Number of digits in m!

• O(log(m!))

• O(m*log(m))

• Working mod m! is slow

• check your Python 
cost model

k mod 6 Permutation

0 <1, 2, 3>

1 <1, 3, 2>

2 <2, 1, 3>

3 <2, 3, 1>

4 <3, 1, 2>

5 <3, 2, 1>



Working Compromise 

• Why does linear probing suck?

• We jump in the table once, then walk

• Improvement

• Keep jumping after the initial jump

• Jumping distance: 2nd hash function 

• Name: double hashing



Double Hashing: Math
• h1(k) and h2(k) are 

hashing functions
0 taken
1
2 taken
3
4 taken
5 taken
6 taken
7 taken
8
9 taken



Double Hashing: Math
• h1(k) and h2(k) are 

hashing functions

• H(k, 0) = h1(k)

0 taken
1
2 taken
3

h1(29) ➙ 4 taken
5 taken
6 taken
7 taken
8
9 taken



Double Hashing: Math
• h1(k) and h2(k) are 

hashing functions

• H(k, 0) = h1(k)

• H(k, 1) = h1(k) + h2(k)

0 taken
1
2 taken
3

h1(29) ➙ 4 taken
5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken



Double Hashing: Math
• h1(k) and h2(k) are 

hashing functions

• H(k, 0) = h1(k)

• H(k, 1) = h1(k) + h2(k)

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken
3

h1(29) ➙ 4 taken
5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken



Double Hashing: Math
• h1(k) and h2(k) are 

hashing functions

• H(k, 0) = h1(k)

• H(k, 1) = h1(k) + h2(k)

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken



Double Hashing: Math
• h1(k) and h2(k) are 

hashing functions

• H(k, 0) = h1(k)

• H(k, 1) = h1(k) + h2(k)

• H(k, i) = h1(k) + i⋅h2(k)

• mod m

• you knew that, right?

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken



Double Hashing Trap
• gcd(h2(k), m) must be 1

• solution 1 (easy to get)

• m prime, h2(k) = k 
mod q (where q < m)

• solution 2 (faster, better)

• m = 2r (table can grow)

• h2(k) is odd (not even)

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken



Open Addressing: 
Deleting Keys

• Suppose we want to 
delete kd stored at 7

• Can’t simply wipe the 
entry, because key 29 
wouldn’t be found 
anymore

• rember H(29) =
<4, 7, 0, 3 ...>

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 kd

8
9 taken



Open Addressing: 
Deleting Keys

• Entry meaning  ‘deleted’ 

• Handling ‘deleted’

• Search: Keep looking

• Insert: Stop, replace 
‘deleted’ with the new 
key/value

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 deleted
8
9 taken



Open Addressing:Code

• Design: implementing a collection in Python

• __getitem__(self, key)

• return key item or raise KeyError(key)

• __setitem__(self, key, item)

• insert / replace (key, item)

• __delitem__(self, key)



Open Addressing: Code
• Closures: not for n00bs

• def compute_modulo is 
local to the mod_m call

• the function created by 
def compute_modulo is 
returned like any object

• the object remembers 
the context around the 
def (the value of m)

 1 def mod_m(m):
 2     def compute_modulo(n):
 3         return (n % m)
 4     return compute_modulo
 5 
 6 >>> m5 = mod_m(5)
 7 >>> m3 = mod_m(3)
 8 >>> m5(9)
 9 4
10 >>> m3(9)
11 0



Open Addressing:Code

 1 def linear_probing(m = 1009):
 2    def hf(key, attempt):
 3        return (hash(key) + attempt) % m
 4    return hf
 5    
 6 def double_hashing(hf2, m = 1009):
 7    def hf(key, attempt):
 8        return (hash(key) + attempt * hf2(key)) % m
 9    return hf
10
11 class DeletedEntry:
12    pass
13
14 class OpenAddressingTable:
15    def __init__(self, hash_function, m = 1009):
16        self.entries = [None for i in range(m)]
17        self.hash = hash_function
18        self.deleted_entry = DeletedEntry()



Open Addressing: Code
14 class OpenAddressingTable:
15    def __init__(self, hash_function, m = 1009):
16        self.entries = [None for i in range(m)]
17        self.hash = hash_function
18        self.deleted_entry = DeletedEntry()
19
20    def get_entry(self, key):
21        for attempt in xrange(len(self.entries)):
22            h = self.hash(key, attempt)
23            if self.entries[h] is None: 
24                return None
25            if self.entries[h] is not self.deleted_entry and \
26               self.entries[h][0] == key:
27                return self.entries[h]
28    
29    def __getitem__(self, key):
30        entry = self.get_entry(key)
31        if entry is None:
32            raise KeyError(key)
33        return entry[1]
34        
35    def __contains__(self, key):
36        return self.get_entry(key) is not None



Open Addressing: Code
14 class OpenAddressingTable:
15    def __init__(self, hash_function, m = 1009):
16        self.entries = [None for i in range(m)]
17        self.hash = hash_function
18        self.deleted_entry = DeletedEntry()
19
37    def __setitem__(self, key, value):
38        if value is None: raise 'Cannot set value to None'
39        del self[key]
40        for attempt in xrange(len(self.entries)):
41            h = self.hash(key, attempt)
42            if self.entries[h] is None or \
43               self.entries[h] is self.deleted_entry:
44                self.entries[h] = (key, value)
45                return
46        raise 'Table full'



Open Addressing: Code
14 class OpenAddressingTable:
15    def __init__(self, hash_function, m = 1009):
16        self.entries = [None for i in range(m)]
17        self.hash = hash_function
18        self.deleted_entry = DeletedEntry()
19
47    def __delitem__(self, key):
48        for attempt in xrange(len(self.entries)):
49            h = self.hash(key, attempt)
50            if self.entries[h] is None: 
51                return
52            if self.entries[h] is not self.deleted_entry and \
53               self.entries[h][0] == key:
54                self.entries[h] = self.deleted_entry
55                return
56        return



Ghosts of Karp & Rabin
Getting Rolling Hashes Right



Modular Arithmetic

• Foundation:

• (a + b) mod m = ((a mod m) + (b mod m)) 
mod m

• From that, it follows that:

• (a ⋅ b) mod m = ((a mod m) ⋅ (b mod m)) 
mod m

• induction: multiplication is repeated +



Modular Gotcha

• Never give mod a negative number

• want q = (a - b) mod m, but a - b < 0

• q mod m = (a - (b mod m)) mod m

• but (b mod m) is < m

• so (a + m - (b mod m)) > 0

• q = (a + m - (b mod m)) mod m



Modular Arithmetic-Fu

• Multiplicative inverses: assume p is prime 

• For every a and p, there is a-1 so that:

• (a *  a-1) mod p = 1

• example: p = 23, a = 8 ⇒ a-1 = 3

• check: 8 * 23 = 24, 24 mod 23 = 1

• Multiplying by a-1 is like dividing by a



Modular Arithmetic-Fu

• How do we compute a-1?

• Fermat’s Little Theorem:

• p prime ⇒ aa-1 mod p = 1

• Huh?

• aa-1 mod p = a * aa-2 mod p = 1

• so (for p) a-1 mod p = aa-2 mod p



Back to Rolling Hashes 

• Data Structure (just like hash table)

• start with empty list

• append(val): appends val at the end of list

• skip(): removes the first list element 

• hash(): computes a hash of the list



And we’re done!

• costan@mit.edu

• (617) 230-9694, no voicemail

• AIM: victorcostan

• Google Talk: costan@gmail.com

• 32G-8th Floor

mailto:costan@mit.edu
mailto:costan@mit.edu
mailto:costan@gmail.com
mailto:costan@gmail.com


v. Next

• Open Addressing takes 40/45 minutes

• Maybe enough time to cover modular 
arithmetic, not enough time for rolling hash 
tricks

• Can improve structure, more visualizations 
will definitely help students get it faster


