
6.006 Recitation
Build 2008.14

Coming up next...

• Open addressing

• Karp-Rabin

• coming back from the dead to hunt us

Open Addressing

• Goal: use nothing but the table

• Hoping for less code, better caching

• Hashing ⇒ we must handle collisions

• Solution: try another location

Easy Collision handling
• h(x) = standard hash

function

• if T[h(x)] is taken

• try T[h(x)+1]

• then T[h(x) + 2]

• then T[h(x) + 3]

• just like parking a car

0 taken
1
2 taken
3

h(29) ➙ 4 taken
h(29) + 1 ➙

))
5 taken

h(29) + 2 ➙
))

6 taken
h(29) + 3 ➙ 7 here ☺

8
9 taken

Collision Handling:
Abstracting it Up

• h(k) grows up to H(k, i)
where i is the attempt
number

• first try T[H(k, 0)]

0 taken
1 taken
2 taken
3 taken
4 taken
5 taken
6 taken
7 taken
8 taken

H(29, 0) ➙ 9 taken

Collision Handling:
Abstracting it Up

• h(k) grows up to H(k, i)
where i is the attempt
number

• first try T[H(k, 0)]

• then T[H(k, 1)]

0 taken
H(29, 1) ➙ 1 taken

2 taken
3 taken
4 taken
5 taken
6 taken
7 taken
8 taken

H(29, 0) ➙ 9 taken

Collision Handling:
Abstracting it Up

• h(k) grows up to H(k, i)
where i is the attempt
number

• first try T[H(k, 0)]

• then T[H(k, 1)]

• then T[H(k, 2)]

0 taken
H(29, 1) ➙ 1 taken

2 taken
3 taken

H(29, 2) ➙ 4 taken
5 taken
6 taken
7 taken
8 taken

H(29, 0) ➙ 9 taken

Collision Handling:
Abstracting it Up

• h(k) grows up to H(k, i)
where i is the attempt
number

• first try T[H(k, 0)]

• then T[H(k, 1)]

• then T[H(k, 2)]

• stop after trying all

H(29, 3) ➙ 0 taken
H(29, 1) ➙ 1 taken
H(29, 4) ➙ 2 taken
H(29, 9) ➙ 3 taken
H(29, 2) ➙ 4 taken
H(29, 5) ➙ 5 taken
H(29, 6) ➙ 6 taken
H(29, 7) ➙ 7 taken
H(29, 8) ➙ 8 taken
H(29, 0) ➙ 9 taken

Collision Handling:
Abstracting it Up

• H(k) =
<H(k, 0), H(k, 1), H(k,
2) ... >

• Linear probing, h(29) =
4, Hlinear(29) = ?

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>

• General properties?

H(29, 3) ➙ 0 taken
H(29, 1) ➙ 1 taken
H(29, 4) ➙ 2 taken
H(29, 9) ➙ 3 taken
H(29, 2) ➙ 4 taken
H(29, 5) ➙ 5 taken
H(29, 6) ➙ 6 taken
H(29, 7) ➙ 7 taken
H(29, 8) ➙ 8 taken
H(29, 0) ➙ 9 taken

Collision Handling:
Abstracting it Up

• Any collision handling strategy comes to:

• for key k, probe H(k,0), then H(k,1) etc.

• No point in trying the same place twice

• Probes should cover the whole table
(otherwise we raise ‘table full’ prematurely)

• Conclusion: H(k, 0), H(k, 1) ... H(k, m-1) are
a permutation of {1, 2, 3 ... m}

Linear Probing and
Permutations

• h(29) = 4; H(29) =

<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>

• h(k) = h0(mod m); H(k) =

<h0 mod m, (h0 + 1) mod
m, (h0 + 2) mod m, ...
(h0 + m - 1) mod m >

• m permutations (max m!)

0 taken
1
2 taken
3

h(29) ➙ 4 taken
h(29) + 1 ➙

))
5 taken

h(29) + 2 ➙
))

6 taken
h(29) + 3 ➙ 7 here ☺

8
9 taken

Ideal Collision Handling

• Simple Hashing (collision by chaining)

• Ideal hashing function: uniformly
distributes keys across hash values

• Open Addressing

• Ideal hashing function: uniformly
distributes keys across permutations

• a.k.a. uniform hashing

Uniform Hashing:
Achievable?

• Simple mapping between
permutations of m and
numbers 1 ... m!

• Convert key to big
number, then use
permutation number
(bignum mod m!)

• ... right?

k mod 6 Permutation

0 <1, 2, 3>

1 <1, 3, 2>

2 <2, 1, 3>

3 <2, 3, 1>

4 <3, 1, 2>

5 <3, 2, 1>

Uniform Hashing:
Achievable?

• Number of digits in m!

• O(log(m!))

• O(m*log(m))

• Working mod m! is slow

• check your Python
cost model

k mod 6 Permutation

0 <1, 2, 3>

1 <1, 3, 2>

2 <2, 1, 3>

3 <2, 3, 1>

4 <3, 1, 2>

5 <3, 2, 1>

Working Compromise

• Why does linear probing suck?

• We jump in the table once, then walk

• Improvement

• Keep jumping after the initial jump

• Jumping distance: 2nd hash function

• Name: double hashing

Double Hashing: Math
• h1(k) and h2(k) are

hashing functions
0 taken
1
2 taken
3
4 taken
5 taken
6 taken
7 taken
8
9 taken

Double Hashing: Math
• h1(k) and h2(k) are

hashing functions

• H(k, 0) = h1(k)

0 taken
1
2 taken
3

h1(29) ➙ 4 taken
5 taken
6 taken
7 taken
8
9 taken

Double Hashing: Math
• h1(k) and h2(k) are

hashing functions

• H(k, 0) = h1(k)

• H(k, 1) = h1(k) + h2(k)

0 taken
1
2 taken
3

h1(29) ➙ 4 taken
5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken

Double Hashing: Math
• h1(k) and h2(k) are

hashing functions

• H(k, 0) = h1(k)

• H(k, 1) = h1(k) + h2(k)

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken
3

h1(29) ➙ 4 taken
5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken

Double Hashing: Math
• h1(k) and h2(k) are

hashing functions

• H(k, 0) = h1(k)

• H(k, 1) = h1(k) + h2(k)

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken

Double Hashing: Math
• h1(k) and h2(k) are

hashing functions

• H(k, 0) = h1(k)

• H(k, 1) = h1(k) + h2(k)

• H(k, i) = h1(k) + i⋅h2(k)

• mod m

• you knew that, right?

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken

Double Hashing Trap
• gcd(h2(k), m) must be 1

• solution 1 (easy to get)

• m prime, h2(k) = k
mod q (where q < m)

• solution 2 (faster, better)

• m = 2r (table can grow)

• h2(k) is odd (not even)

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 taken
8
9 taken

Open Addressing:
Deleting Keys

• Suppose we want to
delete kd stored at 7

• Can’t simply wipe the
entry, because key 29
wouldn’t be found
anymore

• rember H(29) =
<4, 7, 0, 3 ...>

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 kd

8
9 taken

Open Addressing:
Deleting Keys

• Entry meaning ‘deleted’

• Handling ‘deleted’

• Search: Keep looking

• Insert: Stop, replace
‘deleted’ with the new
key/value

h1(29)+2⋅h2(29) ➙ 0 taken
1
2 taken

h1(29)+3⋅h2(29) ➙ 3 here ☺
h1(29) ➙ 4 taken

5 taken
6 taken

h1(29)+h2(29) ➙ 7 deleted
8
9 taken

Open Addressing:Code

• Design: implementing a collection in Python

• __getitem__(self, key)

• return key item or raise KeyError(key)

• __setitem__(self, key, item)

• insert / replace (key, item)

• __delitem__(self, key)

Open Addressing: Code
• Closures: not for n00bs

• def compute_modulo is
local to the mod_m call

• the function created by
def compute_modulo is
returned like any object

• the object remembers
the context around the
def (the value of m)

 1 def mod_m(m):
 2 def compute_modulo(n):
 3 return (n % m)
 4 return compute_modulo
 5
 6 >>> m5 = mod_m(5)
 7 >>> m3 = mod_m(3)
 8 >>> m5(9)
 9 4
10 >>> m3(9)
11 0

Open Addressing:Code

 1 def linear_probing(m = 1009):
 2 def hf(key, attempt):
 3 return (hash(key) + attempt) % m
 4 return hf
 5
 6 def double_hashing(hf2, m = 1009):
 7 def hf(key, attempt):
 8 return (hash(key) + attempt * hf2(key)) % m
 9 return hf
10
11 class DeletedEntry:
12 pass
13
14 class OpenAddressingTable:
15 def __init__(self, hash_function, m = 1009):
16 self.entries = [None for i in range(m)]
17 self.hash = hash_function
18 self.deleted_entry = DeletedEntry()

Open Addressing: Code
14 class OpenAddressingTable:
15 def __init__(self, hash_function, m = 1009):
16 self.entries = [None for i in range(m)]
17 self.hash = hash_function
18 self.deleted_entry = DeletedEntry()
19
20 def get_entry(self, key):
21 for attempt in xrange(len(self.entries)):
22 h = self.hash(key, attempt)
23 if self.entries[h] is None:
24 return None
25 if self.entries[h] is not self.deleted_entry and \
26 self.entries[h][0] == key:
27 return self.entries[h]
28
29 def __getitem__(self, key):
30 entry = self.get_entry(key)
31 if entry is None:
32 raise KeyError(key)
33 return entry[1]
34
35 def __contains__(self, key):
36 return self.get_entry(key) is not None

Open Addressing: Code
14 class OpenAddressingTable:
15 def __init__(self, hash_function, m = 1009):
16 self.entries = [None for i in range(m)]
17 self.hash = hash_function
18 self.deleted_entry = DeletedEntry()
19
37 def __setitem__(self, key, value):
38 if value is None: raise 'Cannot set value to None'
39 del self[key]
40 for attempt in xrange(len(self.entries)):
41 h = self.hash(key, attempt)
42 if self.entries[h] is None or \
43 self.entries[h] is self.deleted_entry:
44 self.entries[h] = (key, value)
45 return
46 raise 'Table full'

Open Addressing: Code
14 class OpenAddressingTable:
15 def __init__(self, hash_function, m = 1009):
16 self.entries = [None for i in range(m)]
17 self.hash = hash_function
18 self.deleted_entry = DeletedEntry()
19
47 def __delitem__(self, key):
48 for attempt in xrange(len(self.entries)):
49 h = self.hash(key, attempt)
50 if self.entries[h] is None:
51 return
52 if self.entries[h] is not self.deleted_entry and \
53 self.entries[h][0] == key:
54 self.entries[h] = self.deleted_entry
55 return
56 return

Ghosts of Karp & Rabin
Getting Rolling Hashes Right

Modular Arithmetic

• Foundation:

• (a + b) mod m = ((a mod m) + (b mod m))
mod m

• From that, it follows that:

• (a ⋅ b) mod m = ((a mod m) ⋅ (b mod m))
mod m

• induction: multiplication is repeated +

Modular Gotcha

• Never give mod a negative number

• want q = (a - b) mod m, but a - b < 0

• q mod m = (a - (b mod m)) mod m

• but (b mod m) is < m

• so (a + m - (b mod m)) > 0

• q = (a + m - (b mod m)) mod m

Modular Arithmetic-Fu

• Multiplicative inverses: assume p is prime

• For every a and p, there is a-1 so that:

• (a * a-1) mod p = 1

• example: p = 23, a = 8 ⇒ a-1 = 3

• check: 8 * 23 = 24, 24 mod 23 = 1

• Multiplying by a-1 is like dividing by a

Modular Arithmetic-Fu

• How do we compute a-1?

• Fermat’s Little Theorem:

• p prime ⇒ aa-1 mod p = 1

• Huh?

• aa-1 mod p = a * aa-2 mod p = 1

• so (for p) a-1 mod p = aa-2 mod p

Back to Rolling Hashes

• Data Structure (just like hash table)

• start with empty list

• append(val): appends val at the end of list

• skip(): removes the first list element

• hash(): computes a hash of the list

And we’re done!

• costan@mit.edu

• (617) 230-9694, no voicemail

• AIM: victorcostan

• Google Talk: costan@gmail.com

• 32G-8th Floor

mailto:costan@mit.edu
mailto:costan@mit.edu
mailto:costan@gmail.com
mailto:costan@gmail.com

v. Next

• Open Addressing takes 40/45 minutes

• Maybe enough time to cover modular
arithmetic, not enough time for rolling hash
tricks

• Can improve structure, more visualizations
will definitely help students get it faster

