6.006 Recitation

Build 2008.14

Coming up next...

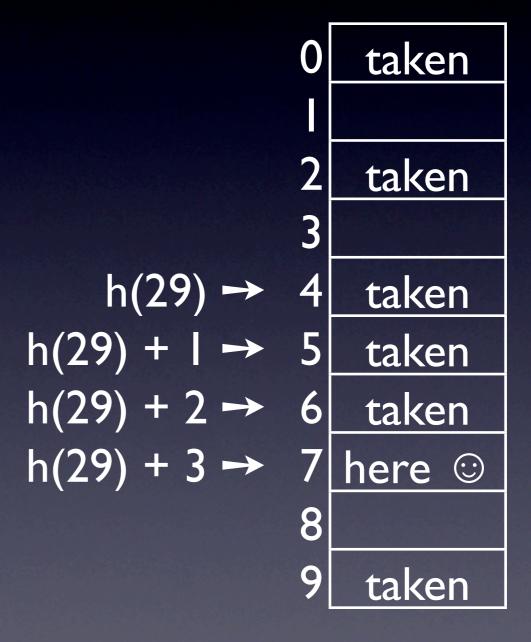
- Open addressing
- Karp-Rabin
 - coming back from the dead to hunt us

Open Addressing

- Goal: use nothing but the table
 - Hoping for less code, better caching
- Hashing ⇒ we must handle collisions
 - Solution: try another location

Easy Collision handling

- h(x) = standard hash function
- if T[h(x)] is taken
 - try T[h(x)+1]
 - then T[h(x) + 2]
 - then T[h(x) + 3]
- just like parking a car



- h(k) grows up to H(k, i) where i is the attempt number
- first try T[H(k, 0)]

0	taken
	taken
2	taken
3	taken
4	taken
5	taken
6	taken
7	taken
8	taken
9	taken

 $H(29,0) \rightarrow$

- h(k) grows up to H(k, i) where i is the attempt number
- first try T[H(k, 0)]
 - then T[H(k, I)]

- h(k) grows up to H(k, i) where i is the attempt number
- first try T[H(k, 0)]
 - then T[H(k, I)]
 - then T[H(k, 2)]

	0	taken
$H(29, 1) \rightarrow$		taken
	2	taken
	3	taken
$H(29, 2) \rightarrow$	4	taken
	5	taken
	6	taken
	7	taken
	8	taken
$H(29,0) \rightarrow$	9	taken

- h(k) grows up to H(k, i) where i is the attempt number
- first try T[H(k, 0)]
 - then T[H(k, I)]
 - then T[H(k, 2)]
- stop after trying all

$H(29,3) \rightarrow$	0	taken
$H(29, 1) \rightarrow$		taken
$H(29,4) \rightarrow$	2	taken
$H(29, 9) \rightarrow$	3	taken
$H(29,2) \rightarrow$	4	taken
$H(29,5) \rightarrow$	5	taken
$H(29,6) \rightarrow$	6	taken
$H(29,7) \rightarrow$	7	taken
H(29, 8) →	8	taken
$H(29,0) \rightarrow$	9	taken

- H(k) =<H(k, 0), H(k, 1), H(k, 2) ... >
- Linear probing, h(29) = 4, $H_{linear}(29) = ?$

```
<4, 5, 6, 7, 8, 9, 0, 1, 2, 3>
```

General properties?

```
H(29,3) \rightarrow 0
                     taken
H(29, 1) \rightarrow 1
                     taken
H(29,4) \rightarrow 2
                    taken
H(29, 9) \rightarrow 3
                    taken
H(29, 2) \rightarrow 4
                    taken
H(29,5) \rightarrow 5
                     taken
H(29,6) \rightarrow 6
                     taken
H(29,7) \rightarrow 7
                     taken
H(29,8) \rightarrow 8
                     taken
H(29,0) \rightarrow 9
                     taken
```

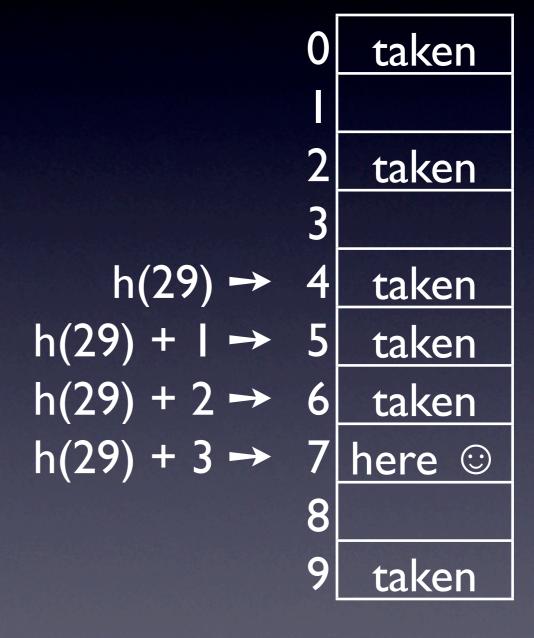
- Any collision handling strategy comes to:
 - for key k, probe H(k,0), then H(k,1) etc.
- No point in trying the same place twice
- Probes should cover the whole table
 (otherwise we raise 'table full' prematurely)
- Conclusion: H(k, 0), H(k, 1) ... H(k, m-1) are a permutation of {1, 2, 3 ... m}

Linear Probing and Permutations

• $h(k) = h_0 \pmod{m}$; H(k) =

```
h_0 \mod m, h_0 + 1 mod m, h_0 + 2 mod m, ... h_0 + m - 1 mod m > 1
```

m permutations (max m!)



Ideal Collision Handling

- Simple Hashing (collision by chaining)
 - Ideal hashing function: uniformly distributes keys across hash values
- Open Addressing
 - Ideal hashing function: uniformly distributes keys across permutations
 - a.k.a. uniform hashing

Uniform Hashing: Achievable?

- Simple mapping between permutations of m and numbers I ... m!
- Convert key to big number, then use permutation number (bignum mod m!)
- ... right?

k mod 6	Permutation
0	<1, 2, 3>
	<1,3,2>
2	<2, 1, 3>
3	<2, 3, 1>
4	<3, 1, 2>
5	<3, 2, 1>

Uniform Hashing: Achievable?

- Number of digits in m!
 - O(log(m!))
 - O(m*log(m))
- Working mod m! is slow
 - check your Python cost model

k mod 6	Permutation
0	<1, 2, 3>
	<1,3,2>
2	<2, 1, 3>
3	<2, 3, 1>
4	<3, I, 2>
5	<3, 2, 1>

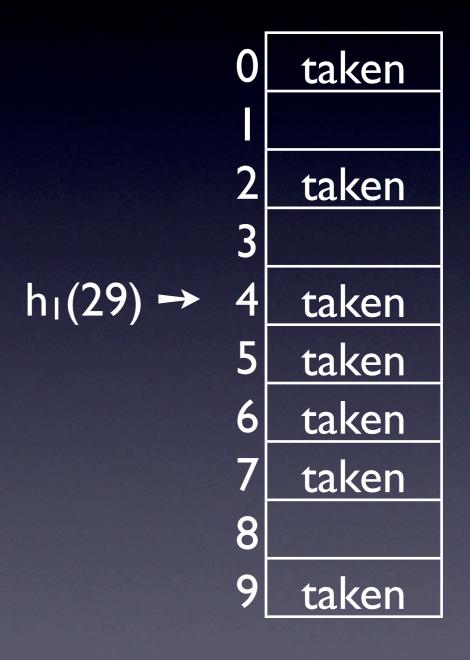
Working Compromise

- Why does linear probing suck?
 - We jump in the table once, then walk
- Improvement
 - Keep jumping after the initial jump
 - Jumping distance: 2nd hash function
 - Name: double hashing

 h₁(k) and h₂(k) are hashing functions

0	taken
I	
2	taken
3	
4	taken
5	taken
6	taken
7	taken
8	
9	taken

- h₁(k) and h₂(k) are hashing functions
- $\bullet \quad H(k, 0) = h_1(k)$



- h₁(k) and h₂(k) are hashing functions
- $H(k, 0) = h_1(k)$
- $H(k, 1) = h_1(k) + h_2(k)$

	0	taken
	1	
	2	taken
	3	
h₁(29) →	4	taken
	5	taken
	6	taken
$h_1(29) + h_2(29) \rightarrow$	7	taken
	8	
	9	taken

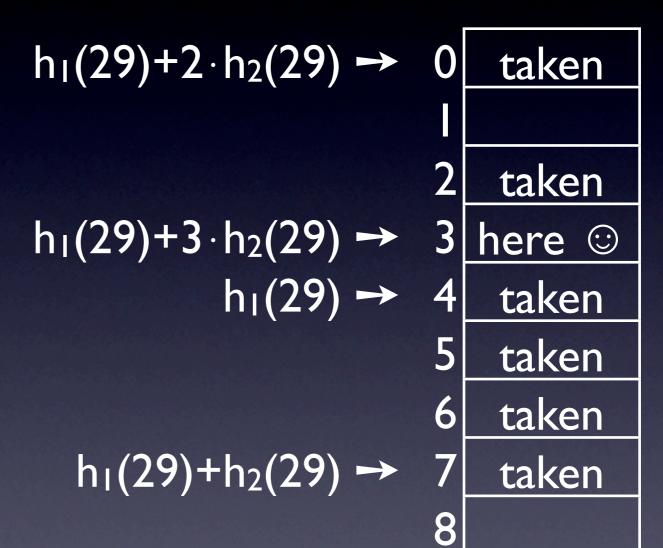
- h₁(k) and h₂(k) are hashing functions
- $H(k, 0) = h_1(k)$
- $H(k, l) = h_1(k) + h_2(k)$

$h_1(29) + 2 \cdot h_2(29) \rightarrow$	0	taken
	2	taken
	3	
h ₁ (29) →	4	taken
	5	taken
	6	taken
$h_1(29)+h_2(29) \rightarrow$	7	taken
	8	
	9	takon

- h₁(k) and h₂(k) are hashing functions
- $\bullet \ \ H(k,0) = h_1(k)$
- $H(k, l) = h_1(k) + h_2(k)$

$h_1(29) + 2 \cdot h_2(29) \rightarrow$	0	taken
	1	
	2	taken
$h_1(29)+3\cdot h_2(29) \rightarrow$	3	here 😊
h₁(29) →	4	taken
	5	taken
	6	taken
$h_1(29) + h_2(29) \rightarrow$	7	taken
	8	
	9	taken

- h₁(k) and h₂(k) are hashing functions
- $\bullet \ \ H(k,0) = h_1(k)$
- $H(k, l) = h_1(k) + h_2(k)$
- $H(k, i) = h_1(k) + i \cdot h_2(k)$
 - mod m
 - you knew that, right?



9

Double Hashing Trap

- $gcd(h_2(k), m)$ must be I
- $h_1(29)+2\cdot h_2(29) \rightarrow$
- taken

- solution I (easy to get)
- $h_1(29) + 3 \cdot h_2(29) \rightarrow$
- taken here ⓒ

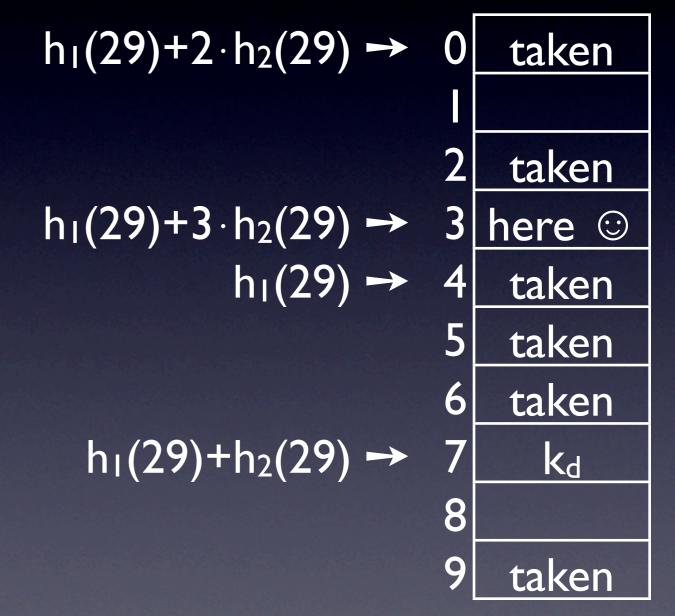
- m prime, $h_2(k) = k$ mod q (where q < m)
- $h_1(29) \rightarrow h_2(29) \rightarrow$
- taken

- solution 2 (faster, better)
- $h_1(29) + h_2(29) \rightarrow$
- 6 taken
 - taken
- 8
- 9 taken

- $m = 2^r$ (table can grow)
- h₂(k) is odd (not even)

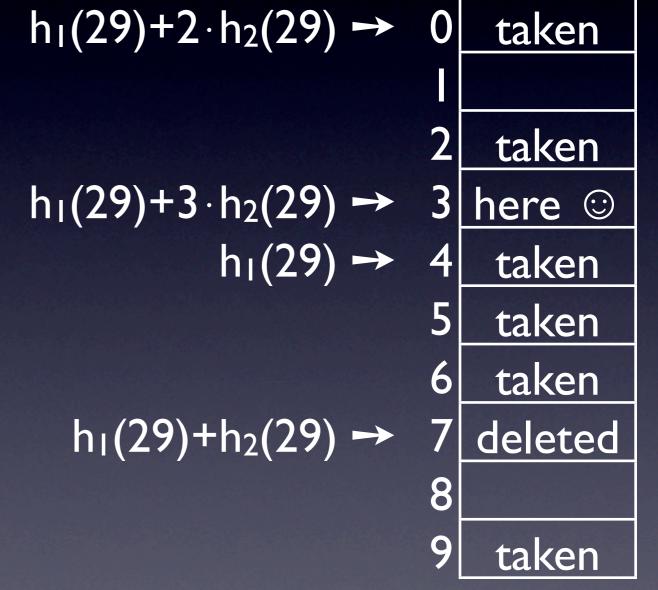
Open Addressing: Deleting Keys

- Suppose we want to delete k_d stored at 7
- Can't simply wipe the entry, because key 29 wouldn't be found anymore
 - rember H(29) =<4, 7, 0, 3 ...>



Open Addressing: Deleting Keys

- Entry meaning 'deleted'
- Handling 'deleted'
 - Search: Keep looking
 - Insert: Stop, replace 'deleted' with the new key/value



- Design: implementing a collection in Python
 - getitem_(self, key)
 - return key item or raise KeyError(key)
 - setitem_(self, key, item)
 - insert / replace (key, item)
 - delitem_(self, key)

- Closures: not for n00bs
- def compute_modulo is local to the mod_m call
- the function created by def compute_modulo is returned like any object
- the object remembers the context around the def (the value of m)

```
1 def mod_m(m):
2     def compute_modulo(n):
3         return (n % m)
4     return compute_modulo
5
6 >>> m5 = mod_m(5)
7 >>> m3 = mod_m(3)
8 >>> m5(9)
9 4
10 >>> m3(9)
11 0
```

```
1 def linear_probing(m = 1009):
      def hf(key, attempt):
 2
          return (hash(key) + attempt) % m
      return hf
   def double_hashing(hf2, m = 1009):
      def hf(key, attempt):
          return (hash(key) + attempt * hf2(key)) % m
 8
 9
     return hf
10
   class DeletedEntry:
12
      pass
13
   class OpenAddressingTable:
15
      def __init__(self, hash_function, m = 1009):
          self.entries = [None for i in range(m)]
16
          self.hash = hash_function
17
18
          self.deleted_entry = DeletedEntry()
```

```
14 class OpenAddressingTable:
15
      def __init__(self, hash_function, m = 1009):
16
          self.entries = [None for i in range(m)]
          self.hash = hash_function
17
18
          self.deleted_entry = DeletedEntry()
19
20
      def get_entry(self, key):
21
          for attempt in xrange(len(self.entries)):
22
              h = self.hash(key, attempt)
23
              if self.entries[h] is None:
24
                  return None
25
              if self.entries[h] is not self.deleted_entry and \
                 self.entries[h][0] == key:
26
27
                  return self.entries[h]
28
29
      def __getitem__(self, key):
30
          entry = self.get_entry(key)
31
          if entry is None:
32
              raise KeyError(key)
33
          return entry[1]
34
35
      def __contains__(self, key):
36
          return self.get_entry(key) is not None
```

```
14 class OpenAddressingTable:
      def __init__(self, hash_function, m = 1009):
15
          self.entries = [None for i in range(m)]
16
          self.hash = hash function
17
          self.deleted_entry = DeletedEntry()
18
19
37
      def __setitem__(self, key, value):
38
          if value is None: raise 'Cannot set value to None'
39
          del self[key]
          for attempt in xrange(len(self.entries)):
40
              h = self.hash(key, attempt)
41
              if self.entries[h] is None or \
42
                 self.entries[h] is self.deleted_entry:
43
                  self.entries[h] = (key, value)
44
45
                  return
46
          raise 'Table full'
```

```
14 class OpenAddressingTable:
15
      def __init__(self, hash_function, m = 1009):
16
          self.entries = [None for i in range(m)]
17
          self.hash = hash_function
18
          self.deleted_entry = DeletedEntry()
19
47
      def __delitem__(self, key):
48
          for attempt in xrange(len(self.entries)):
49
              h = self.hash(key, attempt)
50
              if self.entries[h] is None:
51
                  return
52
              if self.entries[h] is not self.deleted_entry and \
53
                 self.entries[h][0] == key:
54
                  self.entries[h] = self.deleted_entry
55
                  return
56
          return
```

Ghosts of Karp & Rabin

Getting Rolling Hashes Right

Modular Arithmetic

- Foundation:
 - (a + b) mod m = ((a mod m) + (b mod m))
 mod m
- From that, it follows that:
 - (a · b) mod m = ((a mod m) · (b mod m))
 mod m
 - induction: multiplication is repeated +

Modular Gotcha

- Never give mod a negative number
 - want $q = (a b) \mod m$, but a b < 0
 - \bullet q mod m = (a (b mod m)) mod m
 - but (b mod m) is < m
 - so (a + m (b mod m)) > 0
 - q = (a + m (b mod m)) mod m

Modular Arithmetic-Fu

- Multiplicative inverses: assume p is prime
- For every a and p, there is a-1 so that:
 - $(a * a^{-1}) \mod p = 1$
 - example: p = 23, $a = 8 \Rightarrow a^{-1} = 3$
 - check: $8 * 23 = 24, 24 \mod 23 = 1$
- Multiplying by a⁻¹ is like dividing by a

Modular Arithmetic-Fu

- How do we compute a-1?
- Fermat's Little Theorem:
 - p prime \Rightarrow a^{a-1} mod p = 1
- Huh?
 - $a^{a-1} \mod p = a * a^{a-2} \mod p = 1$
 - so (for p) a^{-1} mod $p = a^{a-2}$ mod p

Back to Rolling Hashes

- Data Structure (just like hash table)
 - start with empty list
 - append(val): appends val at the end of list
 - skip(): removes the first list element
 - hash(): computes a hash of the list

And we're done!

- costan@mit.edu
- (617) 230-9694, no voicemail
- AIM: victorcostan
- Google Talk: costan@gmail.com
- 32G-8th Floor

v. Next

- Open Addressing takes 40/45 minutes
- Maybe enough time to cover modular arithmetic, not enough time for rolling hash tricks
- Can improve structure, more visualizations will definitely help students get it faster