
Introduction to Algorithms November 18, 2009
Massachusetts Institute of Technology 6.006 Fall 2009
Professors Srini Devadas and Constantinos (Costis) Daskalakis Quiz 2 Solutions

Quiz 2 Solutions

Problem 1. True or False[14 points] (14 parts)

For each of the following questions, circle either T (True) or F (False).

(a) T F Heapsort is not a stable sorting algorithm.

Solution: True

(b) T F Finding the minimum element of a binary min heap takes logarithmic time.

Solution: False

(c) T F Any type of sorting algorithm can be used to sort the digits inone phase of radix
sort.

Solution: False

(d) T F Given a matrix representation of a graph with V vertices, we can run depth-first
search in O(V) time.

Solution: False

(e) T F DFS finds the longest paths from start vertex s to each vertex vin the graph.

Solution: False

(f) T F In a graph with negative weight cycles, one such cycle can be found inO(V E)
time whereV is the number of vertices andE is the number of edges in the graph.

Solution: True

(g) T F One always obtains the shortest path to each vertex, i.e., one using the minimum
number of edges, using breadth-first search.

Solution: True

6.006 Quiz 2 Solutions Name 2

(h) T F A directed graph with a negative weight cycle has a topological ordering.

Solution: False

(i) T F If one can reach every vertex from a start vertex in a directedgraph, then the
graph is strongly connected.

Solution: False

(j) T F Topological sort can be performed using one breadth-first search procedure on
the graph.

Solution: False

(k) T F Finding the strongly connected components in a graph requires Ω(V E) time
whereV is the number of vertices andE is the number of edges.

Solution: False

(l) T F If one transforms edge weightsw(u, v) to w′(u, v) = w(u, v)− λ(u) + λ(v) for
arbitraryλ(), then Dijkstra on the modified graph will return shortest paths in the
original graph.

Solution: False

(m) T F The only operations required by Dijkstra on the priority queue data structure are
EXTRACT MIN, INSERT and DECREASEKEY.

Solution: True

(n) T F Dijkstra assumes the triangle inequality on edge weights, that is, for each triple
of edges(u, v), (u, a) and(a, v), we havew(u, v) >= w(u, a) + w(a, v).

Solution: False

6.006 Quiz 2 Solutions Name 3

Problem 2. Merging Multiple Lists [15 points]

You are givenK sorted lists of numbers. Each list has lengthN/K, so the total length of all of
the lists isN . Describe an algorithm using heaps to merge theseK lists of N/K numbers into a
single sorted list ofN numbers. Your algorithm should run inO(N log K) time, although you will
receive partial credit for less efficient algorithms.

Solution: ClearlyK ≤ N as otherwise each list would contain< 1 numbers.

Algorithm: The pseudocode of the proposed algorithm is the following:

1.Create a min-heapH as follows

•the elements stored inH are theK sorted lists given in the input;

•the key of each element ofH is the smallest number in the corresponding list (note that
finding this is anO(1) operation since every list in the input is ordered);

2.create an empty output arrayF [0 : N]; initialize an indexi = 0;

3.whileH is non-empty

(a)letL be the list at the root of the heap;

(b)extract the minimum numberx from L; F [i]← x; i← i + 1;

(c)if L is empty, call extractmin(H) to extractL fromH;

(d)else call Heapify(H, 1) to fix the min heap property at the root of the heap (which may
have been violated after extractingx from L since the key ofL was updated).

Correctness:The correctness of the algorithm follows from the fact that every time a numberx is
added to the output list of numbersF , x is the minimum among all uninserted numbers. Indeed,
every list inside the heap is keyed on its minimum number; hence the minimum number in the list
at the root of the heap is the minimum number among all lists’ minimum numbers, and therefore
the overall minimum number of all uninserted numbers.

Running Time: The running time of the algorithm isO(K + N log K). Indeed, it takesO(K)
to build the heap sinceH containsK elements and reading the key out of each element is an
O(1) operation. Then for each number added to the output arrayF we need to perform either an
extract min operation or aheapify operation onH. These operations takeO(log K) time,
since at all times in the execution of the algorithmH has sizeO(K). The total number of numbers
added to the output array areN , hence we need to call these operationsO(N) times. Hence,
the cost of the second phase of the algorithm isO(N log K), and the overall running time of the
algorithm isO(K + N log K) = O(N log K), using also thatK ≤ N .

6.006 Quiz 2 Solutions Name 4

Problem 3. Assigning Directions[15 points]

Consider a mixed unweighted graphG = (V,E) with both directed and undirected edges. Assume
that initially there are no cycles inG which use only directed edges. Give an algorithm to assign
direction to each of the undirected edges so that the completely directed graph so obtained has no
cycles. Analyze the asymptotic complexity of the algorithm.

Solution: The set of edges consists of directed and undirected edges:E = Edir∪Eundir. We first
find a topological ordering(v1, . . . , v|V |) of vertices in the restricted graph(V,Edir). We know that
the ordering exists, becauseG′ is directed and acyclic. Every directed edge inEdir goes “from left
to right” in the ordering, that is, it goes from somevi to somevj such thati < j. Then the algorithm
assigns a direction to every edge(vp, vq) in Eundir so that it goes fromvmin{p,q} to vmax{p,q}, i.e.,
also from left to right in the ordering. The resulting graph is directed and clearly has no cycles.

The running time of the algorithm isO(|V | + |E|). A topological ordering can be found in linear
time, and directions can be assigned in linear time as well.

6.006 Quiz 2 Solutions Name 5

Problem 4. Modified Dijkstra [20 points] (2 parts) Modify Dijsktra’s algorithm to find, out
of all shortest paths, the one with fewest number of edges from a start vertexs to all other vertices.

(a) [10 points] Propose an augmented data-structure for each node for solving this prob-
lem.

Solution: Augment each nodeuwith valuel[u], which represents the current least
number of edges in the current shortest path from the source to u. While relaxing
an edge, if a path of a smaller length or the same length but with fewer edges is
found,l[u] is updated to the number of edges in that path. During initialization,
l[source] is set to 0, while other values can be set arbitrary.

(b) [10 points] Modify theRELAX function with your augmentation.

RELAX(u,v,w)

if (______________________________________) // relax condition

then d[v] = d[u] + w(u,v)

parent[v] = u

Solution:

RELAX(u,v,w)

if (d[u]+w(u,v)<d[v] or (d[u]+w(u,v)==d[v] and l[u]+1<l[v]))

then d[v] = d[u] + w(u,v)

l[v] = l[u] + 1

parent[v] = u

6.006 Quiz 2 Solutions Name 6

Problem 5. Road Network[15 points]

Consider a road network modelled as a weighted undirected graph G with positive edge weights
where edges represent roads connecting cities inG. However some roads are known to be very
rough, and while traversing from citys to t we never want to take a route that takes more than a
single rough road. Assume a boolean attributer[e] for each edgee which indicates ife is rough
or not. Give an efficient algorithm to compute the shortest distance between two citiess andt that
doesn’t traverse more than a single rough road. (Hint: Transform G and use a standard shortest
path algorithm as a black-box.)

Solution: Transform the graphG to get the graphG′ = (V ′, E ′) in the following way:

For every vertexv ∈ V (G), create two verticesvr andvs in G′. For every smooth edge(u, v) ∈
E(G), create edges(ur, vr) and(us, vs) in G′. For every rough edge(u, v) ∈ E(G), create edges
(us, vr) and (vs, ur) in G′. Now we can run Dijkstra’s shortest path algorithm to compute the
shortest paths fromss to ts and fromss to tr and select the minimum of the two. CreatingG′

from G takesO(E + V) time and has2V vertices and2E edges. Running Dijkstra takesO(2E +
2V log 2V), i.e. O(E + V log V) time using fibonacci heaps. Alternatively, we can also add0
weight edges fromus to ur for all u ∈ V (G) and run Dijsktra once fromss to tr which still has the
same asymptotic runtime.

The rough verticesvr ∈ V (G′) model the scenario when one rough edge has been traversed during
the path. From construction we can guarantee that any path inG′ can have atmost one rough edge.
As soon as a rough edge is traversed, from the smooth verticesregion we reach the rough vertices
region and now there are no outgoing rough edges from this region, only smooth edges can be
traversed from this point onwards.

6.006 Quiz 2 Solutions Name 7

Problem 6. Dynamic Programming[20 points] (2 parts)

Describe an algorithm, using dynamic programming, to find the number of binary strings of length
N which do not contain any two consecutive 1’s. For example for N=2, the algorithm should return
3 as the possible binary strings are 00, 01 and 10. You will receive greater credit for a more efficient
algorithm.

(a) [10 points] State the set of subproblems that you will use to solve this problem and
the corresponding recurrence relation to compute the solution.

Solution: Let a[i] be the number of binary strings of lengthi which do not contain
any two consecutive 1’s and which end in 0. Similarly, letb[i] be the number of such
strings which end in 1. We can append either 0 or 1 to a string ending in 0, but we can
only append 0 to a string ending in 1. This yields the recurrence relation:

a[i] = a[i− 1] + b[i− 1]

b[i] = a[i− 1]

The base cases of our recurrence area[1] = b[1] = 1. The total number of strings of
lengthi is justa[i] + b[i].

(b) [10 points] Write iterative (non-recursive) pseudo-code tocompute the solution. An-
alyze the running time of your algorithm.

Solution:

(a,b) = (1,1)
for i in range(1,N):

(a,b) = (a+b,a)
print a+b

This algorithm involves a loop withN − 1 iterations and a total ofN − 1 additions.
If we assume that each addition takes constant time, then ouralgorithm is thisO(N).
Note, however, that the valuesa[i] andb[i] grow exponentially. This means that the
final answer will haveO(N) digits. Thus, each addition requiresO(N) time. With
O(N) additions, this makes our algorithmO(N2).

