
Introduction to Algorithms October 13, 2010
Massachusetts Institute of Technology 6.006 Fall 2010
Professors Konstantinos Daskalakis and Patrick Jaillet Quiz 1 Solutions

Quiz 1 Solutions
Problem 1. We hope you mastered this question. Your name is that thing you include at the top
of your problem set when you submit. Found yourself tongue-tied? This question is bound to show
up on future quizes, so feel free to put it on your crib sheet for free points. Not that two points is
enough to really dominate the quiz, but it’s a start.

Problem 2. Asymptotics & Recurrences [20 points] (3 parts)

(a) [10 points] Rank the following functions by increasing order of growth. That is, find
any arrangement g1, g2, g3, g4, g5, g6, g7, g8 of the functions satisfying g1 = O(g2),
g2 = O(g3), g3 = O(g4), g4 = O(g5), g5 = O(g6), g6 = O(g7), g7 = O(g8).

f1(n) = n log2 n f2(n) = n+
√
n log4 n f3(n) =

(
n

4

)
f4(n) =

(
n

n/3

)
f5(n) =

(
n

n− 2

)
f6(n) = 2log2 n f7(n) = n

√
logn f8(n) = n3

(
n

2

)

Solution: f2, f1, f5, f3, f8, f7, f6, f4

(b) [5 points] Find an asymptotic solution of the following functional recurrence. Express
your answer using Θ-notation, and give a brief justification.

T (n) = 16 · T (n/4) + n2 log3 n

Solution: Using Master Theorem, we compare n2 log3 n with nlog4 16 = n2. This is
case 2 of the generalized version of the theorem as treated in class, so we increment
the logk n for Θ(n2 log4 n).

(c) [5 points] Find an asymptotic solution of the following recurrence. Express your
answer using Θ-notation, and give a brief justification. (Note that n

1
log n = 1.)

T (n) = T (
√
n) + 1

Solution: T (n) = Θ(log log n).

To see this, note that
√
. . .
√
n︸ ︷︷ ︸

i times

= n1/2i . So, once i becomes log log n we will have

n1/2i
= n1/ logn = 1. Thus the recursion stops after log log n levels and each level

contributes 1, hence T (n) = Θ(log log n).



6.006 Quiz 1 Solutions Name 2

Problem 3. True/False [18 points] (9 parts)

Circle (T)rue or (F)alse. You don’t need to justify your choice.

(a) T F [2 points] Inserting into an AVL tree can take o(log n) time.

Solution: False. To answer this question, we need to know the length of the
shortest possible path from the root to a leaf node in an AVL tree with n elements.
In the best possible case, for each node we pass, the heights of its two children
differ by 1, and we move to the child with the lower height. The child’s height is
then 2 less than the current node’s height. So in the best case, each time we move
to a new node, the height decreases by 2. The number of times we do this to get
to height 0 is then the height of the root divided by 2. The height of the root is
Θ(log n), so it takes 1/2 · Θ(log n) = Θ(log n) time to insert into an AVL tree,
in the best case. Therefore it cannot take o(log n) time.

(b) T F [2 points] If you know the numbers stored in a BST and you know the structure
of the tree, you can determine the value stored in each node.

Solution: True. You can do an inorder walk of the tree, which would order the
nodes from smallest key to largest key. You can then match them with the values.

(c) T F [2 points] In max-heaps, the operations insert, max-heapify, find-max, and find-
min all take O(log n) time.

Solution: False. The minimum can be any of the nodes without children. There
are n/2 such nodes, so it would take Θ(n) time to find it in the worst case.

(d) T F [2 points] When you double the size of a hash table, you can keep using the same
hash function.

Solution: False. If you double the size of the table, you need to change the
hash function so that it maps keys to {0, 2m-1} instead of mapping them to
{0, m-1}. However, some people answered True, but explained that this would
be inefficient. This answer also received full credit.



6.006 Quiz 1 Solutions Name 3

(e) T F [2 points] We can sort 7 numbers with 10 comparisons.

Solution: False. To sort 7 numbers, the binary tree must have 7! = 5040 leaves.
The number of leaves of a complete binary tree of height 10 is 210 = 1024. This
is not enough.

(f) T F [2 points] Merge sort can be implemented to be stable.

Solution: True. Whether it is stable or not depends on which element is cho-
sen next in case there is a tie during the merge step. If the element from the left
list (the list of elements that came earlier in the original array) is always chosen,
then the merge sort is stable.

(g) T F [2 points] If we were to extend our O(n) 2D peak finding algorithm to four
dimensions, it would take O(n3) time.

Solution: True. The algorithm would break the 4-dimensional array into 16
subarrays, find the maximum element among 12 3-D planes (O(n3) elements),
and recurse into a subarray with a higher neighbor. The recurrence is
T (n) = T (n/2) +O(n3) = O(n3).

(h) T F [2 points] A Θ(n2) algorithm always takes longer to run than a Θ(log n) algo-
rithm.

Solution: False. The constant of the Θ(log n) algorithm could be a lot higher
than the constant of the Θ(n2) algorithm, so for small n, the Θ(log n) algorithm
could take longer to run.

(i) T F [2 points] Assume it takes Θ(k) time to hash a string of length k. We have a
string of length n, and we want to find the hash values of all its substrings that
have length k using a division hash. We can do this in O(n) time.

Solution: True. Use a rolling hash.



6.006 Quiz 1 Solutions Name 4

Problem 4. Runway Reservation Modifications [20 points] (1 part)

Recall the Runway Reservation system used in Problem Set 2. We would like to expand the
functionality of this system to deal with more types of requests.

Suppose there is a plane which needs to request an emergency landing at some time t1 but there is
already a flight scheduled to land there. Rather than shift this existing flight to the next open space,
we would like to just push each subsequent flight back as much as we’re able to until a big enough
gap is created.

For example, assuming a window of 3 minutes with flights at times 28, 31, 35, 38, 42, 46, 49, 53,
57, 60, attempting to insert another flight at time 31 would cause a new set of flights at times 28,
31, 34, 37, 40, 43, 46, 49, 53, 57, 60. In this case we would say four flights needed adjusting - 31,
35, 38, and 42 - to accommodate the emergency landing.

Give an algorithm to find the minimum number of adjustments needed. This algorithm should find
only the number of flight times requiring adjusting, it does not need to perform the flight updates.
Full points will be given for an algorithm which operates well on a very tight schedule and has an
asymptotic running time independent of the number of flights needing adjustment. You may use
data structure augmentations provided that you explain the augmentation. Its maintenance may not
increase the asymptotic running time of other operations but you are not required to prove this.

Solution: Augment the tree with Rank and do binary search on Select, comparing the total
amount of time since t1 with the number of flights which have landed until the boundary of enough
time to insert another flight is found. Running time of log2 n since each Select takes log n time and
we do log n of these.

A more efficient solution is to augment the tree with Rank and simply walk down the tree, again
comparing the number of flights since the insertion with the amount of time that has passed and
recursing on the right child if there has not been enough time or the left child if there already has
until the boundary is found. This means going down the tree only once, for a total of log n time.

Solutions running in time which was not polynomial in log n and potentially touched every node
in the tree were given half-credit if correct. Solutions with incorrect or missing time analysis were
also given half-credit. Common incorrect solutions looked only at children of the flight being
collided with and didn’t actually traverse the tree, thus failing to find the correct place to stop if the
collided flight was a leaf.

Some students provided a clevel solution of “Augment each node with the number of flights which
need to be moved if there is a collision at that node”. Sadly, the course staff was unable to find
an augmentation capable of doing this without increasing the asymptotic running time of other
operations, since any insertion may cause all n nodes to need to have their augmentation updated.



6.006 Quiz 1 Solutions Name 5

Problem 5. Computing Fibonacci numbers [20 points] (3 parts)

The Fibonacci numbers are defined by the following recurrence: F0 = 0, F1 = 1, Fi = Fi−1 +
Fi−2 for i ≥ 2, yielding the sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . . There is a closed-form
formula for Fn given by Fn = φn−(1−φ)n

√
5

, where φ = (1 +
√

5)/2 ≈ 1.618 is the golden ratio.
However, this formula isn’t practical for computing the exact value of Fn as it would require
increasing precision on

√
5 and φ as n increases. In this problem we are interested in obtaining

practical algorithms for computing the nth Fibonacci number Fn for any given n. Assume that
the cost of adding, subtracting, or multiplying two integers is O(1), independent of the size of the
integers we are dealing with.

(a) [5 points] From the recurrence definition of the Fibonacci sequence, one can use the
following simple recursive algorithm:
FIB1(n):

if n ≤ 1 then
return n

else
x← FIB1(n− 1)
y ← FIB1(n− 2)
return x+ y

end if
Give the running time of this algorithm. Express your answer using Θ-notation.

Solution: Let T (n) be the time taken to compute Fn. We have T (n) = T (n− 1) +
T (n− 2) + Θ(1), and so T (n) = Θ(Fn) = Θ(φn).



6.006 Quiz 1 Solutions Name 6

(b) [5 points] Give an algorithm that computes Fn in Θ(n) and justify its running time.

Solution: To obtain the desired algorithm we develop an iterative (non-recursive)
version of the previous algorithm in which we memorize the last two computed Fi-
bonacci numbers, so we are able to compute the next number in constant time. An
example code looks as follows:
FIB2(n):
i← 1
j ← 0
for k = 1 to n do
temp← i+ j
j ← i
i← temp

end for
return j

To analyze the complexity of this algorithm it is sufficient to note that we have n
iterations of the loop and each iteration can be performed in O(1) time.



6.006 Quiz 1 Solutions Name 7

(c) [10 points] Consider the matrixA =

(
0 1
1 1

)
. Show that for i ≥ 1,Ai =

(
Fi−1 Fi
Fi Fi+1

)
.

From the fact thatA2i = (Ai)2, andA2i+1 = A∗(Ai)2, use divide and conquer to show
that An can be calculated in time Θ(log n). Conclude by giving a Θ(log n) algorithm
for computing Fn.

Solution: We first show how to compute An in Θ(log n) time.
Consider the following algorithm:
Matrix power(A, n):
C ←Matrix power(A, bn/2c)
C ← C · C
if n odd then
C ← C · A

end if
return C

The recurrence describing the running time T (n) of this algorithm is T (n) = T (bn/2c)+
O(1). (Note that we work here with 4-by-4 matrices so multiplying them takes O(1)
time.) Using Master Theorem we get T (n) = Θ(log n).
Now, to compute Fn we just call C := Matrix power(A, n) and return the entry
C[1, 2] of the computed answer. Clearly, this takes Θ(log n) time.



6.006 Quiz 1 Solutions Name 8

Problem 6. One Hash, Two Hash [20 points] (4 parts)

We talked in class about two methods for dealing with collisions: chaining and linear probing.
Cornelius Beefe decided to come up with his own method. He creates two hash tables T1 and
T2, each of size m, and two different hash functions h1 and h2 and decides to use T2 to resolve
collisions in T1. Specifically, given an element x, he first calculates h1(x) and tries to insert x into
T1. If there is a collision, he calculates h2(x) and inserts x into T2.

(a) [4 points] Assume T2 uses chaining to deal with collisions. Given an element y, give
an algorithm for deciding whether or not y is in the hash table.

Solution: Hash y using h1(y) and check if T1[h1(y)] contains an element. If this
element is y, return true. Otherwise, hash y using h2(y) and check the list at T2[h2(y)].

Scoring:

4 points: For anything like the above solution

2 points: If you forgot to say something about hashing first to T1

(b) [2 points] Cornelius tries using the following hash functions for each table:

1) h1(x) = (a1)
x mod m for table T1

2) h2(x) = (a2)
x mod m for table T2

He first tries a1 = a2 and uses chaining in table T2. Is this likely to result in fewer
collisions than if he had just used one hash table of size m with chaining?

Solution: No. Items that collide in T1 also collide in T2.

Scoring:

2 points: If you said No.

1 point: If you said yes, but showed you understood something of how the two tables
interact.



6.006 Quiz 1 Solutions Name 9

(c) [4 points] Assume m = 21. Circle the set of values that will result in the fewest
collisions in T2 and explain why you chose it.

(1) a1 = 9, a2 = 5

(2) a1 = 5, a2 = 7

(3) a1 = 4, a2 = 16

(4) a1 = 13, a2 = 11

Solution: There were two correct solutions. Full credit was given for saying a1 = 13
and a2 = 11 because neither is a power of the other (also gave credit for saying a1 and
a2 were relatively prime to each other) and both are relatively prime to 21.
Full credit was also given if you worked out the residuals modulo 21 and saw that
a1 = 9, a2 = 5 had the most possible residuals.

Scoring:

4 points: If you gave either of the two above answers with a correct explanation.

3 points: If you argued that a1 and a2 were relatively prime to the size of the table,
but did not mention their relationship to each other.

2 points: If you said a1 and a2 were prime and/or relatively prime, but did not say
that they were relatively prime to the size of the table.

1 point: If you circled one of the two correct answers with no justification.

(d) [10 points] Consider the case in which T2 uses linear probing to deal with collisions.
Also, assume that h1 satisfies the simple uniform hashing assumption and h2 satisfies
the uniform hashing assumption. We insert 4 elements. What is the probability that
while inserting the fourth element there are at least two collisions?



6.006 Quiz 1 Solutions Name 10

Solution: There must be one collision in the first hash table and (at least) one in the
second.
There are four ways this can occur:

1) k1 and k2 mapped to the same position in T1 (1/m), k3 did not collide in T1

((m − 1)/m), k4 collided with k1 or k3 in T1 (2/m), and k4 collided with k2

in T2 (1/m). The probability of this case is (1/m)((m − 1)/m)(2/m)(1/m) =
(2(m− 1))/m4.

2) k1 and k3 collide in T1, while k2 does not. Has the same probability as the first
case (just different order), (2(m− 1))/m4.

3) k2 and k3 collide in T1. Again the same probablity of (2(m− 1))/m4

4) k1, k2, and k3 mapped to the same position in T1 (1/m2), k4 collides with k1 in T1

(1/m), and with k2 or k3 in T2 (2/m). The probability is (1/m2)(1/m)(2/m) =
2/m4

The total probability is therefore
6m− 4

m4

Scoring: Many people solved the incorrect problem in this part. Rather than solving
for two collisions during the fourth insertion they solved for two collisions over all
four insertions. This is a much easier problem so one point was taken off. If you tried
to solve this problem and made a mistake, you were generally penalized more harshly
because it was an easier problem.

10 points: For the correct answer

9 points: If you came close to the correct answer but missed a case, evaluated a
probability wrong, or made some other fairly major math mistake. If you solved the
wrong problem correctly, you also received 9 points.

7-8 points: If you had the right idea, but missed a lot of cases or evaluated most of
the probabilities incorrectly. 7 points was also given if you explained exactly how to
solve the problem but showed no math.

5-6 points: If you understood that one collision needed to occur in T1 before the
fourth insertion and/or that only one collision could occur in T1 during the fourth
insertion, but did not explain your answer clearly.

3-4 points: If you showed some understanding of the simple uniform hashing as-
sumption, but did not demonstrate much understanding of how the two tables worked
together.



6.006 Quiz 1 Solutions Name 11

1-2 points: If you realized that the probability should decrease with table size, but
showed little other work or explanation.



6.006 Quiz 1 Solutions Name 12

Problem 7. Extreme Temperatures [20 points] (1 part) Professor Daskalakis is interested in
studying extreme temperatures on the Arctic Cap. He placed temperature-measuring devices at m
locations, and programmed each of these devices to record the temperature of the corresponding
location at noon of every day, for a period of n days. Moreover, using techniques that he learned
while preparing the Heapsort lecture, he decided to program each device to store the recorded
temperatures in a max-heap. To cut a long story short, Prof. Daskalakis now has m devices that he
collected from the Arctic Cap, each of which contains in its hard-drive a max-heap of n elements.
He now wants to compute the ` largest temperatures that were recorded by any device, e.g., if
m = 2, n = 5, ` = 5, and the two devices recorded temperatures (−10,−20,−5,−34,−7) and
(−13,−19,−2,−3,−4) respectively, the desired output would be (−2,−3,−4,−5,−7). Can you
help your professor find the ` largest elements in O(m+ ` log `) time? Partial credit will be given
for less efficient algorithms, as long as the run-time analysis is correct.

Solution: Build a max-heap H containing the numbers at the root of every heap. This takes
O(m) time. Now go through the nodes of H. Each of these nodes v is a root of a max-heap Hv

from some device. v has at most 2 subtrees rooted at it in H and two subtrees TvL and TvR rooted
at it in Hv. “Add” the subtrees TvL and TvR to node v of heap H, by adding a record at node v
remembering the indices of the roots of these subtrees in the array representing heap Hv. This
preprocessing step takes overall time O(m), the resulting max-heap H contains all collected data,
and all nodes ofH have at least 2 and at most 4 children. Now in O(` log `) time find the ` biggest
elements of H as follows: Start at the root of H. This is the biggest among all elements, so you
can output it as the biggest number. Now insert all of its children in a new max-heapH′; this takes
constant time since there are at most 4 of them. For each element that is inserted intoH′ throughout
the execution of the algorithm, we are going to remember its location in H. Now looking at the
root of H′, we can find the second biggest element among all collected elements. We output it,
extract it from the heapH′, and add toH′ its at most 4 children inH. Then we extract the new root
of H′, and so on. Every time we output an element we insert at most 4 elements in H′, hence the
size of H′ won’t grow beyond 4`. Hence, every time we insert into H′ we pay at most O(log `).
So, our running time is ` log `. It remains to argue that the proposed algorithm outputs the largest
` elements. Notice that the largest elements of H form a subtree rooted at the root of H. Argue
by induction that a supertree of this subtree is inserted intoH′; indeed, all children of every output
element are inserted intoH′.


