
Introduction to Algorithms October 14, 2009
Massachusetts Institute of Technology 6.006 Spring 2009
Professors Srini Devadas and Constantinos (Costis) Daskalakis Quiz 1 Solutions

Quiz 1 Solutions
Problem 1. Asymptotic orders of growth [9 points] (3 parts)

For each of the three pairs of functions given below, rank the functions by increasing order of
growth; that is, find any arrangement g1, g2, g3 of the functions satisfying g1 = O(g2), g2 = O(g3).
lg n represents logarithm of n to the base 2.

(a)
f1(n) = 8

√
n, f2(n) = 251000, f3(n) = (

√
3)lgn

Solution: f2(n), f1(n), f3(n)

(b)
f1(n) = 1

100
, f2(n) = 1

n
, f3(n) = lgn

n

Solution: f2(n), f3(n), f1(n)

(c)
f1(n) = 2lg3 n, f2(n) = nlgn, f3(n) = lg n!

Solution: f3(n), f2(n), f1(n)



6.006 Quiz 1 Solutions Name 2

Problem 2. Balanced Augmented BST [20 points] (2 parts)

In this question, we use balanced binary search trees for keeping a directory of MIT students.
We assume that the names of students have bounded constant length so that we can compare two
different names in O(1) time. Let n denotes the number of students.

(a) Say we have a binary search tree with students’ last names as the keys with lexico-
graphic dictionary ordering. Let k be the number of students whose last name starts
with a given prefix x.
For example, if the tree contains 5 names {ABC, ABD, ADA, ADB, ADC} there are
k=2 names, ABC and ABD respectively, starting with the prefix x=AB. How can we
output a list of all those students in O(k + log n) time?

Solution: Consider the following procedure for traversing the tree.

traverse(tree, prefix):
if tree is empty then

return
name := the last name at the root of tree
if prefix is a prefix of name then

traverse(left subtree of tree, prefix)
output(name)
traverse(right subtree of tree, prefix)

elseif prefix < name then
traverse(left subtree of tree, prefix)

else
traverse(right subtree of tree, prefix)

It suffices to run traverse(the entire balanced BST, x) to find all last names with
prefix x. The algorithm has the following properties:

• It finds all names with prefix x, because it never excludes a subtree that could
contain a name with prefix x.
• It only outputs names with x as a prefix.
• The running time isO(k+log n), because at each depth it visits at most two nodes

for which x is not a prefix. Therefore, it visits at most 2 ·O(log n) + k nodes.

Another correct solution: Another correct solution is to find the lexicographically
first last name with prefix x, and then to continue visiting consecutive nodes in lexi-
cographic order as in the in-order tree traversal, until we encounter a name for which
x is not a prefix. This procedure visits exactly the same nodes as the first solution, and
also runs in O(k + log n) time.



6.006 Quiz 1 Solutions Name 3

Common errors:
• It is not true that the nodes with prefix x must constitute a connected component

in the tree. As a counterexample consider the following tree:
ABZ
/ \

AAA ZZZ
\
ABA

The nodes with prefix AB are not connected.
• Finding a successor of a node in the tree does not always take O(1) time. It can

take as much as O(log n) time, but for a balanced tree finding the consecutive k
keys can be shown to take only O(log n+ k) time.

(b) Give an algorithm to return the number of nodes k with names starting with a given
prefix x in O(log n) time. You are allowed to augment the binary search tree nodes.

Solution: We can use a similar augmentation of Number of nodes in the left sub-
tree and right subtree which we used for finding the Rank of a node (in PS 2 and
lecture/recitation). First traverse down the tree to find a node xfirst which starts
with the prefix x. Then traverse the left subtree of xfirst to find the minimum node
xmin(lexicographically) which starts with prefix x. Traverse the right subtree of xfirst
to find the largest node xmax (lexicographically) that starts with prefix x. xfirst, xmin
and xmax can be found in O(log n) time. Using the augmentation we can find the
ranks of xmin and xmax. The required number of nodes is equal to Rank(xmax) −
Rank(xmin) + 1.

Another possible augmentation is for each node keeping track of number of nodes in
its subtree which share a common prefix with it for all possible prefixes of that node.
e.g A node with key ABCDE will keep track of number of nodes in its subtree that start
with prefixes A,AB,ABC,ABCD and ABCDE. Since the words are of constant length,
there are constant number of prefixes possible for each node. Now to find the number
of nodes which start with prefix x, we traverse the tree to find the first node xfirst
which starts with prefix x. The required number of nodes is the value stored in the
augmentation of xfirst for the prefix x. In both cases, it is easy to see that only nodes
on the path traversed while insertion are required to be updated for augmentation value
which takes O(log n) time.



6.006 Quiz 1 Solutions Name 4

Problem 3. Employee Dictionary [15 points] (1 part)

We are interested in building a phonebook for the employees of a small company of size < 64,
using a dictionary. Our hash table will have size m = 64, and the employees’ last names will be
used as keys.

The longest employee name is 15 characters long, so to simplify our task we convert every last
name into a 15-character string by introducing space characters in front of the first character. For
instance, the last name ‘Devadas’ will be padded with 8 space characters preceding the leading
‘D’. Now we encode every letter of the English alphabet—together with the space character—into
a unique 6-bit binary number, so that every last name can be represented uniquely by a 90-bit
binary number.

Consider the following hash functions for our dictionary. Which of them is likely to perform the
best? Justify your choice: For the hash functions you rejected, describe a collection of last names
for which the hash function performs poorlyand explain why. For the hash function of your choice,
explain why it is better than the other hash functions. The input k to the following functions is the
90-bit binary number corresponding to a last name:

1.h(k) = k mod 64;

2.h(k) = (a · k mod 218) >> 12, for a = 4097;

3.h(k) = (a · k mod 290) >> 84, for a = 1 + 26 · 54605;

Note: Observe that 4097 = 1 + 212 and 54605 = 11010101010011012. The >> operator is the
right shift operatr.

Solution:

1.Note that 64 = 26. Hence, the hash function keeps the 6 least significant bits of k, which
correspond to the last character of the name—since every character is encoded using 6 bits.
E.g., if the last name is ‘Devadas’, then the value of the hash function will be the 6-bit
binary number (in decimal, a number from 0 through 63) encoding the character ‘s’. So,
names ending in the same letter are hashed to the same number using this hash function. E.g.
‘Clinton’, ‘Franklin’, ‘Jefferson’, etc. are all hashed to the same number.

2.Since a = 1 + 212, the operation a · k performs the addition of k with k′ := 212k, which is
just k shifted left (as a binary number) by 12 positions. Then the operation mod 218 followed
by the operation >> 12 keeps the bits 13 through 18 of k + k′ (counting from the least
significant bit, which is taken to be the 1st bit). See Figure 1. If e1 is the number encoding
the last character of the name and e3 the number encoding the third-to-last character, it can
be shown (see Figure 1) that h(k) = (e1 + e3) mod 64—it is important to note here that there
is no carry from position 12 to position 13 when performing the addition of k and k′. Hence,
last names sharing the same last and third-to-last letters are hashed to the same number. E.g.
‘Jefferson’ and ‘Petersen’ are hashed to the same number.



6.006 Quiz 1 Solutions Name 5

... 

... 0 0

e1e2e3e4e15

e1e2e3e4e15

e1e2

k

k′

(e1 + e3) mod 6

..

. 
k + k′

1 7 13 19 85 90 

Figure 1: The second hash function.

3.Given the value of a selected for this function, the operation a · k performs the addition
S := k0 +k6 +k8 +k9 +k12 +k14 +k16 +k18 +k20 +k21, where ki is the input key k shifted
left (as a binary number) by i bits. Then the operation mod 290 followed by the operation
>> 84 selects the bits 85 through 90 of the result. The choice of a here looks better from the
previous choice, because (i) there are many shifted copies of k created, which are going to
be added to produce the resulting hash, and (ii) the shifts are not in multiples of 6 bits which
is the length used to represent a single character (so there is also mixing at the granularity of
the encoding of characters). Moreover, the function keeps the most significant positions of
S, which allows for the outcomes of the mixing to be visible to the hash value.
However, this function may also suffer from poor performance, because the shifts are rela-
tively small compared to the length of the key (the maximum shift is by 21 binary positions,
whereas the length of the key is 90 bits). In order for this function to perform better than the
previous function, it should be the case that either most of the last names are long (longer
than say 12 characters), or that the binary encoding of the letters is selected very carefully.
Consider, e.g., what would happen if most of the names had length ≤ 9 characters and the
binary encoding of the space character was 0000002. It is easy to see that S ≤ 10 · k21, since
k21 is the largest summand in the summation S. So, if the space character was encoded by
0 and a last name had ≤ 9 characters, then the most significant non-zero bit of k would be
at position ≤ 54. This would imply that the most significant non-zero bit of k21 would be at
position ≤ 75 (since k21 is k shifted left by 21 positions), which would imply that the most
significant non-zero bit of S is at position ≤ 79 (since S ≤ 10 · k21 and 10 ≤ 24). So the bits
85 through 90 of S would all be zero. So all names of length≤ 9 characters would be hashed
to position 0.



6.006 Quiz 1 Solutions Name 6

Problem 4. Asymptotic Runtime Analysis [15 points] (1 part)

Professor Devadas has an idea to assign students to recitations based on their Quiz 1 grades. He
wants to split all N students into 4 recitations such that the maximum difference between the Quiz
1 grades of any two students in the same recitation is as small as possible. To figure out if this idea
is reasonable, he wants to know how small the staff can make this maximum difference.

Let the number of students be N and suppose that Quiz 1 scores are all integers in the range
1 . . .M . Professor Daskalakis suggests the following Python code, which takes the value of M and
a pre-sorted list of quiz scores:

def assign_recitations(M, scores):
N = len(scores)
a = 1
b = M
while a < b:

c = (a+b)/2
groups = 1
group_low = scores[0]
for i in range(N):

if scores[i] > group_low + c:
groups = groups + 1
group_low = scores[i]

if groups <= 4:
b = c

else:
a = c+1

return a

What is the asymptotic running time of this algorithm? Express your answer as a function of N
and/or M using Θ-notation.

Solution: The inner loop (the for loop) runs in constant time per iteration with N iterations.
The outer loop is performing binary search on the interval [1,M ] and thus takes log2M iterations.
Thus, the runtime is Θ(logM) ·Θ(N) ·Θ(1) = Θ(N logM).



6.006 Quiz 1 Solutions Name 7

Problem 5. Airplane Scheduling [20 points] (1 part)

Logan airport management asks you to compute the airport “load” during one day, which is the
maximum number of planes that are on the ground at the same time. You are provided the data
for n airplanes’ arrival and departure times. To simplify computation, the day is divided into m
time segments and only these segments are recorded. For the plane i, start[i] denotes the time
segment of arrival and end[i] denotes the time segment of departure; 1 ≤ start[i] ≤ end[i] ≤ m.
A plane is considered to be on the ground during arrival and departure time segments, as well as
all segments in between. For example, if n = 5, m = 10 and planes’ (arrival, departure) pairs
are {(5, 7), (1, 3), (8, 10), (2, 5), (4, 9)}, then the airport load is 3 (during time segment 5 planes 1,
4, and 5 are on the ground).

Give an O(m+ n) time algorithm to find the airport load. If you provide an algorithm with worse
time complexity you will be given partial credit.

Solution:

/* Lists to keep track of arrivals and departures */
for(i = 1; i <= m; i++)

A[i]= D[i] = 0

/* Go through (arrival, departure) pairs, incrementing count */
for(j = 1; j <= n; j++) {

A[arrival[j]] = A[arrival[j]] + 1
D[departure[j]] = D[departure[j]] + 1

}

/* Compute current load and compare with max load */
max_load = 0; load = 0;
for(i = 1; i < m; i++) {

load = load + A[i];
if (load > max_load) max_load = load;
load = load - D[i];

}

The first loop isO(m). The second loop isO(n). The third loop isO(m). Note that the max load
check has to happen after incrementing load by the number of arrivals and before decrementing by
the number of departures, in order to take into acount the fact that a plane is considered to be on
the ground during its departure segment.

The above two arrays can be merged into a single array C. We will increment C[arrival[j]]
and decrement C[departure[j]+1] in the second loop. Then, we keep adding the entries of C
and find the maximum sum, which will be the maximum load. The +1 added to departure[j]
ensures that we treat a plane as being on the ground during its departure segment.



6.006 Quiz 1 Solutions Name 8

Problem 6. Multiplying two N-bit Numbers [20 points] (2 parts)

LetX and Y be two n-bit numbers in baseB and we would like to compute their productZ = XY .
A naive divide-and-conquer technique can work as follows:
Divide X into two (n/2)-bit numbers X1 and X0 and similarily Y into Y1 and Y0. Let b = Bn/2.

X = X1b+X0

Y = Y1b+ Y0
Z = (X1b+X0)(Y1b+ Y0)
Z = Z2b

2 + Z1b+ Z0

where Z2 = X1Y1, Z1 = X1Y0 + X0Y1 and Z0 = X0Y0 can be obtained recursively. Assume
addition of two n-bit numbers takes Θ(n) time. Also assume that multiplying an n-bit number by
Bm also takes Θ(n+m) time.

(a) Prove that the above naive divide-and-conquer algorithm runs in Θ(n2) time.

Solution: Let T (n) denote the running time of the algorithm on n-bit numbers. It
consists of several computations. Splitting X into X1 and X0, as well as splitting Y
into Y1 and Y0, takes Θ(n) time. Computing X1Y1, X1Y0, X0Y1 and X0Y0 recursively
takes 4T (n

2
) time, as each subproblem performs multiplication of two n

2
-bit numbers.

Adding X1Y0 and X0Y1 to compute Z1 takes Θ(n) time, as it is addition of two n-bit
numbers. In the last step, computing Z = Z2b

2 + Z1b + Z0 takes Θ(n) time because
Z2b

2 is multiplication of n-bit number with b2 = Bn, Z1b is multiplication of n-bit
number with b = B

n
2 , and there is addition of three numbers of size at most 2n.

Finally, we can write:
T (n) = 4T

(n
2

)
+ f(n),

where f(n) = Θ(n). We can apply Master Theorem to solve this recurrence.

a = 4, b = 2, logb a = log2 4 = 2, nlogb a = n2.

Therefore, f(n) = Θ(n) = O(n2−ε) for any 0 < ε ≤ 1 (take ε = 1 for example).
From case 1 of Master Theorem it follows that T (n) = Θ(nlogb a) = Θ(n2).

(b) It turns out that we only need 3 multiplications to compute Z2,Z1 and Z0 instead of 4,
required in the previous case, at the cost of some extra additions as follows:
Z2 = X1Y1, Z0 = X0Y0 and Z1 = (X1 +X0)(Y1 + Y0)− Z2 − Z0

What is the time complexity of this algorithm in terms of n?



6.006 Quiz 1 Solutions Name 9

Solution: There are three subproblems in the modified algorithm. ComputingX1Y1,
X0Y0 and (X1+X0)(Y1+Y0) recursively takes 3T (n

2
) time, while all other operations

take Θ(n) time (there are two subtractions in computing Z1, while Z is computed as
before). Now, the recurrence is:

T (n) = 3T
(n

2

)
+ f(n),

where f(n) = Θ(n). We can again apply Master Theorem.

a = 3, b = 2, logb a = log2 3, nlogb a = nlog2 3.

Therefore, f(n) = Θ(n) = O(nlog2 3−ε) for any 0 < ε ≤ log2 3 − 1 (there exists
such ε because log2 3 > 1). Again, from case 1 of Master Theorem it follows that
T (n) = Θ(nlogb a) = Θ(nlog2 3).
Note that this algorithm is better then the previous one, since log2 3 < 2 and, corre-
spondingly, Θ(nlog2 3) is lower asymptotic time than Θ(n2).


