
Introduction to Algorithms May 19, 2011
Massachusetts Institute of Technology 6.006 Spring 2011
Professors Erik Demaine, Piotr Indyk, and Manolis Kellis Final Exam Solutions

Final Exam Solutions
Problem 1. True or false [30 points] (10 parts)

For each of the following questions, circle either T (True) or F (False). Explain your choice.
(Your explanation is worth more than your choice of true or false.)

(a) T F For all positive f(n), f(n) + o(f(n)) = Θ(f(n)).

Solution: True.

(b) T F For all positive f(n), g(n) and h(n), if f(n) = O(g(n)) and f(n) = Ω(h(n)),
then g(n) + h(n) = Ω(f(n)).

Solution: True. This follows from f(n) = O(g(n))⇒ g(n) = Ω(f(n)).

6.006 Final Exam Solutions Name 2

(c) T F Under the simple uniform hashing assumption, the probability that three specific
data elements (say 1, 2 and 3) hash to the same slot (i.e., h(1) = h(2) = h(3)) is
1/m3, where m is a number of buckets.

Solution: False. The above formula only describes the probability of collision
in a fixed bucket (say bucket number 1). The correct answer is 1/m2.

(d) T F Given an array of n integers, each belonging to {−1, 0, 1}, we can sort the array
in O(n) time in the worst case.

Solution: True. Use counting sort, e.g., after adding 1 to all numbers.

6.006 Final Exam Solutions Name 3

(e) T F The following array is a max heap: [10, 3, 5, 1, 4, 2].

Solution: False. The element 3 is smaller than its child 4, violating the max-
heap property.

(f) T F RADIX SORT does not work correctly (i.e., does not produce the correct output)
if we sort each individual digit using INSERTION SORT instead of COUNTING

SORT.

Solution: False. INSERTION SORT (as presented in class) is a stable sort, so
RADIX SORT remains correct. The change can worsen running time, though.

3 points for correct answer and explanation
1 point for incorrect answer, but mentioning that radix sort needs to use a stable
sort

6.006 Final Exam Solutions Name 4

(g) T F Given a directed graph G, consider forming a graph G′ as follows. Each vertex
u′ ∈ G′ represents a strongly connected component (SCC) of G. There is an
edge (u′, v′) in G′ if there is an edge in G from the SCC corresponding to u′ to
the SCC corresponding to v′.
Then G′ is a directed acyclic graph.

Solution: True. If there were any cycles in the graph of strongly connected
components, then all the components on the cycle would actually be one strongly
connected component.

3 points for correct answer

(h) T F Consider two positively weighted graphs G = (V,E,w) and G′ = (V,E,w′)
with the same vertices V and edges E such that, for any edge e ∈ E, we have
w′(e) = w(e)2.
For any two vertices u, v ∈ V , any shortest path between u and v in G′ is also a
shortest path in G.

Solution: False. Assume we have two paths in G, one with weights 2 and 2
and another one with weight 3. The first one is shorter in G′ while the second
one is shorter in G.

3 points for correct answer - most people got this right

6.006 Final Exam Solutions Name 5

(i) T F An optimal solution to a knapsack problem will always contain the object i with
the greatest value-to-cost ratio vi/ci.

Solution: False. Greedy choice doesn’t work for the knapsack problem. For
example, if the maximum cost is 2, and there are two items, the first with cost
1 and value 2, and the second with cost 2 and value 3, the optimal solution is to
take just the second item.
3 points for correct answer

(j) T F Every problem in NP can be solved in exponential time.

Solution: True.
3 points for correct answer

6.006 Final Exam Solutions Name 6

Problem 2. Short answer [40 points] (8 parts)

(a) Rank the following functions by increasing order of growth; that is, find an arrange-
ment g1, g2, g3, g4 of the functions satisfying g1 = O(g2), g2 = O(g3), g3 = O(g4).
(For example, the correct ordering of n2, n4, n, n3 is n, n2, n3, n4.)

f1 = (n!)1/n f2 = log nn f3 = nn1/2

f4 = n log n log log n

Solution: The correct order if f1, f2, f4, f3

(b) Solve the following recurrences by giving tight Θ-notation bounds. You do not need
to justify your answers, but any justification that you provide will help when assigning
partial credit.

i. T (n) = 4T (n/2) + n2 log n

ii. T (n) = 8T (n/2) + n log n

iii. T (n) =
√

6006 · T (n/2) + n
√
6006

Solution:
i. Case 2 of the Master Method - T (n) = n2 log2 n.

ii. Case 1 of the Master Method - T (n) = n3.

iii. Case 3 of the Master Method to obtain T (n) = Θ(n
√
6006), checking that the reg-

ularity condition af(n/2) =
√

6006n
2

√
6006 ≤ cn

√
6006 for some c < 1. Condition

holds for any c >
√

6006/2
√
6006.

6.006 Final Exam Solutions Name 7

(c) Give a recurrence T (n) = · · · for the running time of each of the following algorithms,
along with the asymptotic solution to that recurrence:

i. Insertion sort
ii. Merge sort

iii. 2D peak finding (the fastest algorithm we’ve seen)

Solution:
i. T (n) = T (n− 1) + O(n) = O(n2)

ii. T (n) = 2T (n/2) + Θ(n) = Θ(n lg n)

iii. T (n) = T (n/2) + Θ(n) = Θ(n)

(d) Could a binary search tree be built using o(n lg n) comparisons in the comparison
model? Explain why or why not.

Solution: No, or else we could sort in o(n lg n) time by building a BST in o(n lg n)
time and then doing an in-order tree walk in O(n) time.

6.006 Final Exam Solutions Name 8

(e) Given n integers in the range 0 . . . k, describe how to preprocess these integers into a
data structure that can answer the following query in O(1) time: given two integers a
and b, how many integers fall within the range a . . . b?

Solution: same preprocessing as for counting sort, then numbers in range is C ′(b)−
C ′(a).

(f) Describe how any comparison-based sorting algorithm can be made stable, without
affecting the running time by more than a constant factor.

Solution: Tag elements with their original positions in the array, only increase by a
factor of 2 at most

6.006 Final Exam Solutions Name 9

(g) In dynamic programming, we derive a recurrence relation for the solution to one sub-
problem in terms of solutions to other subproblems. To turn this relation into a bottom-
up dynamic programming algorithm, we need an order to fill in the solution cells in a
table, such that all needed subproblems are solved before solving a subproblem. For
each of the following relations, give such a valid traversal order, or if no traversal order
is possible for the given relation, briefly justify why.

i. A(i, j) = F (A(i, j − 1), A(i− 1, j − 1), A(i− 1, j + 1))

ii. A(i, j) = F (A(min{i, j}− 1,min{i, j}− 1), A(max{i, j}− 1,max{i, j}− 1))

iii. A(i, j) = F (A(i− 2, j − 2), A(i + 2, j + 2))

Solution:
i. Solve A(i, j) for(i from 0 to n: for(j from 0 to n))

ii. Solve A(k, k) for(k from 0 to n) then solve rest in any order
iii. Impossible: cyclic.

(h) Consider an array A[1 . . . n] of integers in the range 1 . . . n2. A number a is a heavy
hitter in A if a occurs in A at least n/2 times.
Give an efficient algorithm that finds all heavy hitters in a given array A.

Solution: Radix-sort and linear scan.

6.006 Final Exam Solutions Name 10

Problem 3. You are the computer [15 points] (3 parts)

(a) Fill in the following grid with the correct subproblem solutions for this sequence align-
ment problem with these weights: 0 for mutation, 1 for insertion or deletion, and 3 for
a match (the goal is to maximize the sum of the weights). Here “ATC” is the starting
sequence and “TCAG” is the ending sequence.

– – A T C
– 0
T
C
A
G

What is the optimal alignment?

Solution: The optimal alignment is to match the “TC” in both sequences.

- - A T C
- 0 1 2 3
T 1 2 4 5
C 2 3 5 7
A 3 5 6 8
G 4 6 7 9

3 points for correctly filled grid, 2 points for correct alignment of sequences

(b) Draw a max-heap on the following set of integers: {2, 3, 5, 7, 11, 13, 17}. (You do not
need to use the Build-Heap algorithm.)

Solution: multiple possible solutions

5 points for a correct answer - (almost) everyone got this correct

6.006 Final Exam Solutions Name 11

(c) Compute 3
√

6006 using two iterations of Newton’s method, i.e., fill out the following
table. Your entry for x1 should be fully simplified. Your entry for x2 can be left
unsimplified.

i xi

0 1

1

2

Solution:
i xi

0 1
1 2002.6̄
2 2/3x1 + 2002

x2
1

5 points for a correct answer

-2 for significant arithmetic/algebraic errors
-3 for errors that led to negative or very large solutions (should have been caught by
simple sanity checks)

6.006 Final Exam Solutions Name 12

Problem 4. Rotated array [10 points]

Consider an array A[1 · · ·n] constructed by the following process: we start with n distinct ele-
ments, sort them, and then rotate the array k steps to the right. For example, we might start with
the sorted array [1, 4, 5, 9, 10], and rotate it right by k = 3 steps to get [5, 9, 10, 1, 4]. Give an
O(log n)-time algorithm that finds and returns the position of a given element x in array A, or
returns None if x is not in A. Your algorithm is given the array A[1 · · ·n] but does not know k.

Solution: Solution I (to be fixed): You can perform a modified binary search.

SEARCH(A, i, j, x)

first ← A[i]
middle ← A[(i + j)/2]
last ← A[j]
if x ∈ {first ,middle, last}:

then
return the corresponding index

else :
if (x < first and x > middle) or (x > first and x > middle): [xxx Isn’t it equivalent to just x > middle ?]

then
return SEARCH(A, (i + j)/2, j, x)

else :
return SEARCH(A, i, (i + j)/2, x)

Solution II: Let k ≥ 0 be the number of elements A was rotated by. We show how to identify the
value of k, after which one can simply perform binary search in the “left part” A[1 . . . k] and the
“right part” A[k + 1 . . . n]. To this end, observe that all elements in the left part are not smaller
than A[1], while all elements in the right part are smaller than A[1]. By binary search we find the
smallest j > 1 such that A[j] is smaller than A[1] (or set j = 1 if no such j exists). We then report
k = j − 1.

6.006 Final Exam Solutions Name 13

Problem 5. Taxachusetts [10 points]

Suppose you are given a weighted graph G = (V,E,w) of highways, and the state government
has implemented a new tax rule whereby the cost of a path gets doubled as penalty if the number
of edges in the path is greater than 10. Explain how to reduce finding the shortest-path weight
between every pair of vertices (under this penalty) to the usual all-pairs shortest paths problem (as
solved by Floyd-Warshall).

Solution: Augment to keep track of path lengths between each pair. We also augment so we keep
track of the shortest-path weight between each pair using fewer than 10 edges and using greater
than 10 edges.

6.006 Final Exam Solutions Name 14

Problem 6. Does this path make me look fat? [10 points]

Consider a connected weighted directed graph G = (V,E,w). Define the fatness of a path P to
be the maximum weight of any edge in P . Give an efficient algorithm that, given such a graph and
two vertices u, v ∈ V , finds the minimum possible fatness of a path from u to v in G.

Solution: There are two good solutions to this problem.

We can see that that fatness must be the weight of one of the edges, so we sort all edge weights
and perform a binary search. To test whether or not a path with a fatness no more than x exists,
we perform a breadth-first search that only walks edges with weight less than or equal to x. If we
reach v, such a path exists.

If such a path exists, we recurse on the lower part of the range we are searching, to see if a tighter
fatness bound also applies. If such a path does not exist, we recurse on the upper part of the range
we are searching, to relax that bound. When we find two neighboring values, one of which works
and one of which doesn’t, we have our answer. This takes O((V + E) lgE) time.

Another good solution is to modify Dijkstra’s algorithm. We use “fatness” instead of the sum of
edge weights to score paths, and the only change to Dijkstra itself that is necessary is to change the
relaxation operation so that it compares the destination node’s existing min-fatness with the max
of the weight of the incoming edge (i, j) and the min-fatness of any path to i (the source of the
incoming edge).

The correctness argument is almost precisely the same as that for Dijkstra’s algorithm. A correct
solution also had to note that negative-weight edges, which could be present here and normally
break Dijkstra, don’t do that here; adding negative numbers produces ever-more-negative path
weights, but taking their max doesn’t. This solution has the same time complexity as Dijkstra’s
algorithm.

Two less-efficient solutions were to use Bellman-Ford instead of Dijkstra (with the same modified
relaxation step and an analagous correctnes argument) and to perform the iterative search linearly
instead of in a binary fashion. These recieved partial credit.

6.006 Final Exam Solutions Name 15

Problem 7. Indiana Jones and the Temple of Algorithms [10 points]

While exploring an ancient temple, Prof. Jones comes across a locked door. In front of this door are
two pedestals, and n blocks each labeled with its positive integer weight. The sum of the weights
of the blocks is W . In order to open the door, Prof. Jones needs to put every block on one of the
two pedestals. However, if the difference in the sum of the weights of the blocks on each pedestal
is too large, the door will not open.

Devise an algorithm that Prof. Jones can use to divide the blocks into two piles whose total weights
are as close as possible. To avoid a boulder rolling quickly toward him, Prof. Jones needs your
algorithm to run in pseudopolynomial time.

Solution: Just consider the smaller of the two piles. The goal is to make the weight of this pile
as close to W/2 as possible, while not exceeding that weight. Our guess for each block is whether
the block is included in this smaller pile or not.

Our subproblems are P (i, w), which has the value “true” if it is possible to make a pile of weight
w ≤ W/2 with some subset of blocks 1 through i, and the value “false” otherwise. Initially, let
P (0, 0) be true, and P (0, w) be false for all values of w > 0.

Let the weight of block i be wi. Use the following recurrence:

P (i, w) = P (i− 1, w) ∨ P (i− 1, w − wi)

(where P (i−1, w−wi) is considered to be false if wi > w). If P (i, w) is true, record in a separate
table B(i, w) which of P (i− 1, w) or P (i− 1, w−wi) was true (choose arbitrarily if they are both
true).

Find the largest value of w for which P (n,w) is true. Then backtrack using the table B to determine
which blocks were included in this pile to achieve this weight. This algorithm runs in O(nW) time,
because there are nW subproblems, each of which takes constant time.

6.006 Final Exam Solutions Name 16

Problem 8. Claustrophobic chickens [10 points]

Prof. Tyson has noticed that the chickens in his farm frequently get claustrophobic. He wants to
build a monitoring system that will alert him when this happens, allowing him to manually re-
arrange the chickens. After thorough research, Prof. Tyson determines that a chicken becomes
claustrophobic if it is within 2 feet of at least 8 other chickens.

Prof. Tyson has installed a tracker on each chicken, which reports the (x, y) coordinates (measured
in feet) of each of his chickens. Suppose that there are n chickens whose locations are represented
as a sequence (x1, y1), . . . , (xn, yn). Prof. Tyson needs an efficient algorithm to determine whether
there are any claustrophobic chickens (causing Prof. Tyson to go out and manually rearrange the
chickens). Devise such an algorithm and save the chickens!

Solution: We shall solve this problem in a way similar to the close pair problem done in lecture,
namely, partitioning the plane into a square grid and hashing points to corresponding buckets.

1. Impose a square grid onto the plane where each cell is a
√

2×
√

2 square.

2. Hash each point into a bucket corresponding to the cell it belongs to.

3. If there is a bucket with ≥ 9 points in it, return YES.

4. Otherwise, for each point p, calculate distance to all points in the cell containing p as well as
the neighboring cells. Return YES if the number of points within distance 2 is ≥ 8. Clearly
the algorithm will find a clumped chicken if one exists, either in step 3 or in step 4. By using
a hash table of size O(n), we can make the above algorithm run in expected linear time.

6.006 Final Exam Solutions Name 17

Problem 9. Architects ‘R Us [15 points]

You are assisting Prof. Gehry with designing the shape of a new room in the Stata Center. The
professor has given you n columns, each of the same unit thickness, but with different heights:
A[1], A[2], . . . , A[n]. He asks you to permute the columns in a line to define the shape of the room.
To make matters difficult, MIT wants to be able to hang a large rectangular picture on the columns.
If j consecutive columns in your order all have a height of at least k, then we can hang a rectangle
of size j · k.

The example below contains 3 consecutive columns with heights of at least 4, so we can hang a
rectangle of area 12 on the first three columns.

(a) Give an efficient algorithm to find the largest area of a hangable rectangle for the initial
order A[1], A[2], . . . , A[n] of columns.

Solution: The best algorithms we know run in O(n2) time.
The simplest O(n2) algorithm is the following. The biggest rectangle is bounded on
top by some column. Guess that column i. So the height of the rectangle is A[i]. Now
walk left until reaching a column of height < A[i], and similarly walk to the right.
Count the number k of traversed columns, and multiply by A[i].
Another O(n2) algorithm is the following. Define m[i, j] to be the minimum of the
interval A[i], . . . , A[j]. Then m[i, j] = min{m[i, j−1], A[j]}, so by memoization, we
can compute all m[i, j]’s in O(n2) time. Now the solution is max{m[i, j] · (j− i+1) :
i ≤ j}, which takes O(n2) time to compute given the m[i, j]’s.
The easy brute-force algorithm already runs in O(n3) time (and was worth a base
value of 4–5 out of 8 points for this part). Just use the computation above, but without
memoizing the m[i, j]’s, so each takes O(n) to compute, and we use O(n2) of them.
An O(nh) algorithm, where h = maxi A[i], was worth a base value of 6 out of 8
points. We define one subproblem per (x, y) coordinate: R(x, y) is the maximum
possible area of a rectangle whose upper-right corner is at (x, y). There are O(nh)

6.006 Final Exam Solutions Name 18

such subproblems. To solve the subproblem, we can use the O(1)-time recurrence

R(x, y) =

{
R(x− 1, y) + y if A[x] ≥ y

0 otherwise.

(b) Devise an efficient algorithm to permute the columns into an order that maximizes the
area of a hangable rectangle.

Solution: The intended algorithm is to sort the columns in decreasing order, e.g.,
using merge sort in O(n lg n) time. This works because, if the correct height of a
rectangle is k, then at best it can involve all columns with height ≥ k, and these are
consecutive in the sorted order. In fact, increasing order works just as well, as does a
strange order (suggested by several students) of putting the maximum in the middle,
then repeatedly placing the next smaller column alternately between the left and right
sides of the construction so far.
We can compute the hangable rectangle in O(n) additional time, though this was not
necessary to receive full credit. For each prefix B[1 · · · i] of the sorted array, we’d like
to compute (minB[1 · i]) · i, and take the maximum over all i. But minB[1 · i] = B[i],
so this actually takes constant time per choice of i, for a total cost of O(n) time.
2 out of 7 points were removed for lack of justification of sorting. 1 out of 7 points
was removed for using counting (or radix) sort, which is not necessarily efficient given
the setup of the problem.

6.006 Final Exam Solutions Name 19

Problem 10. Guess Who? [10 points]

Woody the woodcutter will cut a given log of wood, at any place you choose, for a price equal to
the length of the given log. Suppose you have a log of length L, marked to be cut in n different
locations labeled 1, 2, . . . , n. For simplicity, let indices 0 and n + 1 denote the left and right
endpoints of the original log of length L. Let di denote the distance of mark i from the left end of
the log, and assume that 0 = d0 < d1 < d2 < . . . < dn < dn+1 = L. The wood-cutting problem
is the problem of determining the sequence of cuts to the log that will cut the log at all the marked
places and minimize your total payment. Give an efficient algorithm to solve this problem.

Solution: Dynamic programming. c(i, j) = mini<k<j{c(i, k)+c(k, j)+(dj−di)} where c(i, j)
is the min cost of cutting a log with left endpoint i and right endpoint j at all its marked locations.
Start with c(i, i+1) (consecutive cuts) and move outwards to c(i, i+2), c(i, i+3) until the maximal
distance c(1, n), which gives the optimal score for the whole wood. Remember pointers to k that
gave max score at each step, and trace back pointers to construct optimal solution. Each iteration
takes O(n) (linear search between i and j) and there are O(n2) entries to fill (a triangle really, not a
square). Greedy solutions that pick the maximum cut each time do not work. Similarly, heuristics
like picking the point closest to the center do not work.

6.006 Final Exam Solutions Name 20

Problem 11. Varying variance [20 points]

For a set S of numbers, define its average to be S̄ = 1
|S|

∑
s∈S s, and its variance to be V (S) =

1
|S|

∑
s∈S(s− S̄)2.

A segment variance data structure supports the following operations on an array A[1 . . . n]:

• Assignment: given an index i and a value a, set A[i] = a.

• Segment variance: given a pair of indices i and j, compute V ({A[i], A[i + 1], . . . , A[j]}).

Initially all entries in A are set to 0.

Design a data structure that supports both operations in O(log n) time.

Solution: We have 1/|S|
∑

s∈S(s − S̄)2 = 1/|S|
∑

s∈S s
2 − S̄2. Both terms can be maintained

using an augmented data structure that, in each internal node, keeps (i) the sum of all leaves and
(ii) the sum of squares of all leaves.

