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Final Exam Solutions

Problem 1. Asymptotics [10 points]

For each pair of functions f(n) and g(n) in the table below, write O, €2, or © in the appropriate
space, depending on whether f(n) = O(g(n)), f(n) = Q(g(n)), or f(n) = O(g(n)). If there
is more than one relation between f(n) and g(n), write only the strongest one. The first line is a
demo solution.

We use Ig to denote the base-2 logarithm.

Solution:
n nlgn n?
nlg®n Q Q O
2le” n ) Q Q
lg(n!) Q 0 9,
n'e3 Q Q @)
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Problem 2. True or False [40 points] (10 parts)

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

(a) Analgorithm whose running time satisfies the recurrence P(n) = 1024 P(n/2) + O(n'%)

is asymptotically faster than an algorithm whose running time satisfies the recurrence
E(n)=2E(n—1024) + O(1).

True False
Explain:

Solution: True. The first recurrence leads to a result that is polynomial in n, while
the second recurrence produces a result that is exponential in n.

(b) An algorithm whose running time satisfies the recurrence A(n) = 4 A(n/2) + O(1)
is asymptotically faster than an algorithm whose running time satisfies the recurrence
B(n) =2B(n/4) + O(1).

True False
Explain:

Solution: False. Considering the recursion trees for A(n) and B(n), it is easy to
see that the tree for A has both a smaller height (log,(n) vs. log,(n)), and a smaller
branching factor.
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(c) Radix sort works in linear time only if the elements to sort are integers in the range
{0,1,...,¢n} for some ¢ = O(1).
True False
Explain:

Solution: False. Radix sort also works in linear time if the elements to sort are
integers in the range {1, ..., n?} for any constant d.

(d) Given an undirected graph, it can be tested to determine whether or not it is a tree in
O(V + FE) time. A tree is a connected graph without any cycles.

True False
Explain:

Solution: True. Using either DFS or BFS yields a running time of O(V + E).
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(e)

®

The Bellman-Ford algorithm applies to instances of the single-source shortest path
problem which do not have a negative-weight directed cycle, but it does not detect the
existence of a negative-weight directed cycle if there is one.

True False
Explain:

Solution: False. Bellman-Ford detects negative-weight directed cycles in its input
graph.

The topological sort of an arbitrary directed acyclic graph G = (V, E') can be com-
puted in linear time.

True False
Explain:

Solution: True. A topological sort can be obtained by listing the nodes in the re-
verse order of the exit times produced by a DFS traversal of the graph.

The DFS can also be used to detect if there is a cycle in the graph (there is no valid
topological sort in that case). The running time of DFS is O(V + E).
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(2)

(h)

We know of an algorithm to detect negative-weight cycles in an arbitrary directed
graph in O(V + E)) time.

True False
Explain:

Solution: False.

The best solution presented in this class is the Bellman-Ford algorithm, and its running
time is O(V E).

We know of an algorithm for the single source shortest path problem on an arbitrary
graph with no negative-weights that works in O(V + E) time.

True False
Explain:

Solution: False. The best solution presented in this class is Dijkstra with Fibonacci
heaps, and its running time is O(V log V' + E).
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(i) To delete the i*" node in a min heap, you can exchange the last node with the i node,
then do the min-heapify on the i*" node, and then shrink the heap size to be one less
the original size.

True False
Explain:

Solution: False. The last node may be smaller than the i* node’s parent; min-
heapify won’t fix that.

(j) Generalizing Karatsuba’s divide and conquer algorithm, by breaking each multipli-
cand into 3 parts and doing 5 multiplications improves the asymptotic running time.

True False
Explain:

Solution: False. Karatsuba’s running time is 7'(n) = 37'(n/2)+O(n) = O(n'°%23).
The generalized algorithm’s running time would be 7'(n) = 57'(n/3) + O(n) =
O<nlog3 5).
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Problem 3. Set Union [10 points]

Give an efficient algorithm to compute the union AU B of two sets A and B of total size | A|+|B| =
n. Assume that sets are represented by arrays (Python lists) that store distinct elements in an
arbitrary order. In computing the union, the algorithm must remove any duplicate elements that
appear in both A and B.

For full credit, your algorithm should run in O(n) time. For partial credit, give an O(nlgn)-time
algorithm.

Solution: Algorithm. Let H be an initially empty hash table (Python dictionary), and R be an
initially empty growable array (Python list). For each element e in A and B, do the following. If e
is in 'H, skip over e. Otherwise, append e to R and insert e into H.

Correctness. Each element from A and B is considered. An element is added to H only when it
is added to R, so the elements that are skipped must be duplicates.

Running Time. There are n total elements. In the worst case, each element is looked up in H once,
then inserted into R and H. All operations are constant time per element, so the total running time

is O(n).
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Problem 4. Balanced Trees [10 points]

In the definition of an AVL tree we required that the height of each left subtree be within one of
the height of the corresponding right subtree. This guaranteed that the worst-case search time was
O(logn), where n is the number of nodes in the tree. Which of the following requirements would
also provide the same guarantee?

(a) The number of nodes in each left subtree is within a factor of 2 of the number of nodes
in the corresponding right subtree. Also, a node is allowed to have only one child if
that child has no children.

This tree has worst case height O(Ign).
True False
Explain:

Solution: True. The proof is very similar to the AVL tree proof.

Let N(h) be the minimum number of nodes contained in a tree with height h. The
base cases are N(0) = 0, N(1) = 1, and N(2) = 2. Now we have the following
recurrence for V:

N(h):1+N(h—1)+%N(h—l):1+2N(h—1)

Because a tree with height A~ must have one subtree of height 4 — 1, and the other
subtree has at least half the number of nodes in that subtree.

The solution to this recurrence is N'(h) = ©O((2)"), which gives h = O(IgN), as
desired.
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(b) The number of leaves (nodes with no children) in each left subtree is within one of the
number of leaves in the corresponding right subtree.

This tree has worst case height O(lgn).
True False
Explain:

Solution: False. Consider a tree of n nodes, where node 1 is the root, and node
1 > 1 1is the child of node ¢« — 1. For each node, the left subtree has one leaf, whereas
the right subtree has zero. This meets the “balancing” condition. The height of the
tree is n.



6.006 Final Exam Solutions Name 10

Problem 5. Height Balanced Trees [10 points]

We define the height of a node in a binary tree as the number of nodes in the longest path from the
node to a descendant leaf. Thus the height of a node with no children is 1, and the height of any
other node is 1 plus the larger of the heights of its left and right children.

We define height balanced trees as follows;

e cach node has a “height” field containing its height,
e at any node, the height of its right child differs by at most one from the height of its left child.

Finally we define Fib(i) as follows,

Fib(0) =1
Fib(l) =1
Fib(i) = Fib(i — 1) + Fib(i — 2), fori > 2.
You may use without proof that Fib(n) > 1.6" for large n.
Prove that there are at least Fib(h) nodes in a height balanced tree of height A, for all » > 1.

Solution: Let 7'(h) be the minimum number of nodes in a height balanced tree of height h. We
proceed by induction. For the base cases note that 7°(1) > 7'(0) > 1, thus 7'(1) > Fib(1) and
T(0) > Fib(0). Now assume that T'(h’) > Fib(h') for all A’ < h Clearly, T'(h) > T'(h — 1) +
T(h—2),hence T'(h) > Fib(h — 1) + Fib(h — 2) = Fib(h).
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Problem 6. Maintaining Medians [15 points]

Your latest and foolproof (really this time) gambling strategy is to bet on the median option among
your choices. That is, if you have n distinct choices whose sorted order is c[1] < ¢[2] < - -+ < ¢[n],
then you bet on choice c[[(n + 1)/2]]. As the day goes by, new choices appear and old choices
disappear; each time, you sort your current choices and bet on the median. Quickly you grow tired
of sorting. You decide to build a data structure that keeps track of the median as your choices come
and go. Specifically, your data structure stores the number n of choices, the current median m, and
two AVL trees S and 7', where S stores all choices less than m and T stores all choices greater
than m.

(a) Explain how to add a new choice ¢, to the data structure, and restore the invariants
that (1) m is the median of all current choices; (2) S stores all choices less than m; and
(3) T  stores all choices greater than m. Analyze the running time of your algorithm.

Solution: Store the sizes | S| and |T|, and update them whenever an element is added
or removed from each tree. We will maintain the invariant: ||S | —|T || <=1

If chew < m, and |S| <= |T|, then insert ¢,ey into S, and do not change m. If
Cnew < m and |S| = |T'| + 1, then insert ¢y, into S and insert m into T'. The largest
element of S is the new median, so remove the largest element from S and assign that
value to m. (The case where ¢y, > m is symmetric.)

Each AVL insertion and deletion requires O(lg n) time, for O(lg n) total.
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(b) Explain how to remove an existing choice c.q from the data structure, and restore
invariants (1-3) above. Analyze the running time of your algorithm.

Solution: If c,lq < m, delete c1q from S, decrementing |S|. If ||S| — |T|| <=1, do
nothing. If | S| = |T'| — 2, we need to modify the median. Insert m into S, then extract
minimum element of 7" and store it in m.

Each AVL insertion and deletion requires O(lgn) time, for O(lgn) total.
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Problem 7. Hashing [10 points]

Suppose that we have a hash table with 2n slots, with collisions resolved by chaining, and suppose
that n keys are inserted into the table. Assume simple uniform hashing, i.e., each key is equally
likely to be hashed into each slot.

(a) What is the expected number of elements that hash into slot 7?
Solution: Let X;; be an indicator variable whose value would be 1 if element j
hashes into slot ¢, or 0 otherwise.

E[X;j] = 0- Pr[j does not hash into slot ¢| + 1 - Pr[j hashes into slot |

The probability that an element will hash into slot 7 is %, assuming simple uniform
hashing, so E[X;;] = 5-.

Let NN, be the number of elements that hash into slotz. N; = Z?Zl Xij, 80, by linearity
of expectation, E[N;] = " | E[X;;] = > 5= = 3§

(b) What is the probability that exactly & keys hash into slot ¢?

Solution: It is the probability that some chosen k keys hash into slot ¢ and the other
n — k keys hash into any other slot.

DG ()
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Problem 8. d-max-heap [10 points]

14

A d-max-heap is like an ordinary binary max-heap, except that nodes have d children instead of 2.

(a)

(b)

Describe how a d-max-heap can be represented in an array A[l...n]. In particular,
for the internal (non-leaf) node of the d-max-heap stored in any location A[i], which
positions in A hold its child nodes?

Solution: The representation would use the same idea for storing binary heaps,
which involves storing the nodes as they are given by a level- order traversal. For
example, the root will be node 1, and its children will be nodes 2, 3, 4, and 5.

For a non-leaf node i, its children wouldbe d-71 —d+2,d-1—d+1...d-i,d -1+ 1.

Define the height of the heap to be the number of nodes on the longest path from the
root to a leaf.

In terms of n and d, what is the height of a d-max-heap of n elements?

Solution: [log,n|
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Problem 9. Firehose Optimization [10 points]

You have decided to apply your algorithmic know-how to the practical problem of getting a degree
at MIT. You have just snarfed the course catalog from WebSIS. Assume there no cycles in course
prerequisites. You produce a directed graph G = (V, E') with two types of vertices V' = C'U D:
regular class vertices ¢ € C and special degree vertices d € D. The graph has a directed edge
e = (u,v) whenever a class u € C' is a prerequisite for v € V' (either a class or a degree). For
each class ¢ € C, you’ve computed your desire w(c) € R for taking the class, based on interest,
difficulty, etc. (Desires can be negative.)

Give an O(V + E)-time algorithm to find the most desirable degree, that is, to find a degree d € D
that maximizes the sum of the desires of the classes you must take in order to complete the degree:
> {w(c) : path ¢ ~ d}. (For partial credit, give a slower algorithm.)

Solution: Topological sort. Then compute the aggregate desire for each node in that order. Then
take the max node in S.
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Problem 10. Histogram Hysterics [15 points]

Sometime in the future, you become a TA for 6.006. You have been assigned the job of maintaining
the grade spreadsheet for the class. By the end of the semester, you have a list g of final grades
for the n students, sorted by grade: ¢g[0] < g[1] < --- < g[n — 1]. In an attempt to draw various
beautiful histograms of these grades, the (rather odd) professors now ask you a barrage of questions
of the form “what is the sum of grades g[i : j|, i.e., g[i] + g[i + 1] + - - - + g[j — 1]?” for various
pairs (i, 7). (Dividing this sum by j — i then gives an average.)

To save you work computing summations, you decide to compute some of the sums g[i : j] ahead
of time and store them in a data structure. Unfortunately, your memory is large enough to store
only ©(n) such sums. Once these sums have been computed, can you answer each query by the
professors in O(1) time? If not, give the fastest solution you can.

(a) Which sums g[i : j] should you compute ahead of time?

Solution: For all k, store g[0 : k.



6.006 Final Exam Solutions Name 17

(b) In what data structure should you store these sums?

Solution: They can be stored in an array, a python list, or a dictionary.

(c) How do you then compute a professors’ query for an arbitrary sum g[i : j], and how
long does this take?

Solution:
gli:jl=gl[0:j] —g[0: 1]

This only involves two lookups and a subtraction, for O(1) time.
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Problem 11. Wonderland [20 points]

You have just taken a job at Wonderland (at the end of the Blue Line) as an amusement-ride
operator. Passengers can enter the ride provided it is not currently running. Whenever you decide,
you can run the ride for a fixed duration d (during which no passengers can enter the ride). This
action brings joy to the passengers, causing them to exit the ride and pay you d/¢; dollars where ¢;
is the amount of time passenger ¢ spent between arriving and exiting the ride. Thus, if you start the
ride as soon as a passenger arrives, then t; = d, so you get $1.00 from that passenger. But if you
wait d units of time to accumulate more passengers before starting the ride, then ¢; = 2d, so you
only get $0.50 from that passenger.

Every day feels the same, so you can predict the arrival times ag, a4, . .., a,_1 of the n passengers
that you will see. As passenger ¢ arrives, you must decide whether to start the ride (if it is not
already running). If you start the ride at time a;, then you receive d/(d + a; — a;) dollars from
customers ¢ < j that have not yet ridden, and you can next start the ride at times a;, > a; +d. Your
goal is to maximize the total amount of money you make using dynamic programming.

(a) Clearly state the set of subproblems that you will use to solve this problem.

Solution: Subproblems are finding the maximum amount of money that can be
gained from passengers 0 . . . 7, such that the ride starts after passenger ¢ arrives. Note
that 7 ranges between 0 and n — 1.
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(b) Write a recurrence relating the solution of a general subproblem to solutions of smaller
subproblems.

Solution: We use DPi| to store the answer to the subproblems described above.

DP[i] =1+ max (DPU] + Z m%)
k=j+1 ok

j<i,ai—a]~2d

In words, when we are solving subproblem 7, we know that we will be starting the
ride after passenger ¢ arrives. Then we state that j is the last time the ride was started
before, and we use the results to the previously computed subproblems to find out
what value of j yields the most money.
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(c)

(d)

Analyze the running time of your algorithm, including the number of subproblems
and the time spent per subproblem.

Solution: There are n subproblems. Each subproblem takes O(n) time to solve,
because it is taking into consideration the solutions for O(n) previously solved sub-
problems, and evaluating all the O(n) sums can be done in O(n) amortized time.

Therefore, the total running time is O(n?).

Write the solution to the original problem in terms of solutions to your subproblems.

Solution: The answer is A = DP[n — 1]. Since there are no passengers coming
after the (n — 1) passenger, it will always make sense to start the ride after that last
passenger arrives.

The complete solution consists of the passengers whose arrival should trigger the start-
ing of the ride. It can be easily reconsituted by using parent pointers which store the
argmax for each max computed.
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Problem 12. Dance Dance Evolution [20 points]

You are training for the upcoming Dance Dance Evolution competition and decide to apply your
skills in dynamic programming to find optimal strategies for playing each song.

A simplified version of the problem can be modeled as follows. The song specifies a sequence of
“moves” that you must make. Each move is one of four buttons in the set B = { ] T 1 — ‘ }
that you must press with one of your feet. An example of a song is

T !

«—

) Y )

’ — — — —

) 9 ) 9 ) 9 7T"

You have two feet. At any time, each foot is on one of the four buttons; thus, the current state of
your feet can be specified by an ordered pair (L, R) where L € B denotes the button beneath your
left foot and R € B denotes the button beneath your right foot.

One foot at a time:When you reach a move M € B in the song, you must put one of your feet on
that button, transitioning to state (M, R) or (L, M). Note that you can change only one of
your feet per move. If you already have a foot on the correct button, then you do not need to
change any feet (though you are allowed to change your other foot).

Forbidden states:You are also given a list of forbidden states -, which you are never allowed to
be in. F might include states where both feet are on the same square, or states where you
would end up facing backwards.

Your goal is to develop a polynomial-time algorithm that, given an n-move song My, Ms, ..., M,,
finds an initial state (Lg, Ro) and a valid sequence of transitions (L;, R;) — (L;+1, Riy1) ¢ F, for
0 <1 < n, where Mi—i—l € {Li—l-l; Ri+1} and either L; = Li—l—l or R, = Rz’—i—l,

(a) Clearly state the set of subproblems that you will use to solve this problem.
Solution: A subproblem is the question if it is possible to “clear” states 1...7 and

end up with the feet in the configuration (j, k), where j, k, € B. To simplify the
mathematical recurrence below, an answer of yes is 1, and an answer of no is 0.
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(b) Write a recurrence relating the solution of a general subproblem to solutions of smaller
subproblems.

Solution: We use DPJi|[j][k] to store the answer to the subproblems described
above.

Hif i=0A(Gk)¢F
DPi][j][k] = 0 if (j,k) € FV M; ¢ {j,k}
U,UGBI,I}ji}J;\/v:k DPli — 1][u][v] otherwise

In words, we know that we can start out from any feet configuration not in F. No se-
quence of moves can contain a configuration in F, and a sequence claiming to “clear”
moves 1...7 must end in either (i, R) or (L, 7).

Once these formalities are out of the way, we try to “clear” moves 1. .. by using our
answers for clearing 1...7 — 1, and then moving at most one foot. Note that max
functions as a logical V (or), given our representation of boolean values.
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(c) Analyze the running time of your algorithm, including the number of subproblems
and the time spent per subproblem.

Solution: Let b = |B| (we know that b = 4, but we’ll keep it a variable for the
analysis’ sake). Then we have n x b x b = nb? subproblems. In the worst case,
computing the answert to a subproblem requires taking the maximum over O(b) pre-
viously solved subproblems (b — 1 moves for the left foot, b — 1 moves for the right
foot, and 1 case where no move is required).

The total running time is O(nb*). Given that b = O(1), the expression for the running
time can be simplified to O(n). This is optimal, given that our input size is O(n).

(d) Write the solution to the original problem in terms of solutions to your subproblems.

Solution: The answer is A = maxz; ,e gDP[n|[j][k]. The sequence of moves can be
restored by using parent pointers that remember the argmax of every max taken.



