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Final Exam Solutions
Problem 1. What is Your Name? [2 points] (2 parts)

(a) [1 point] Flip back to the cover page. Write your name there.

(b) [1 point] Flip back to the cover page. Circle your recitation section.
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Problem 2. Storing Partial Maxima [30 points] (1 part)

6.006 student, Mike Velli, wants to build a website where the user can input a time interval in
history, and the website will return the most exciting sports event that occurred during this interval.
Formally, suppose that Mike has a chronologically sorted list of n sports events with associated
integer “excitement factors” e1, . . . , en . You can assume for simplicity that n is a power of 2. A
user’s query will consist of a pair (i, j) with 1 ≤ i < j ≤ n, and the site is supposed to return
max(ei, ei+1, . . . , ej).

Mike wishes to minimize the amount of computation per query, since there will be a lot of traffic
to the website. If he precomputes and stores max(ei, . . . , ej) for every possible input (i, j), he can
respond to user queries quickly, but he needs storage Ω(n2) which is too much.

In order to reduce storage requirements, Mike is willing to allow a small amount of computation
per query. He wants to store a cleverer selection of precomputed values than just max(ei, . . . , ej)
for every (i, j), so that for any user query, the server can retrieve two precomputed values and take
the maximum of the two to return the final answer. Show that now only O(n log n) values need to
be precomputed.

Solution: We are given the list e1, . . . , en. For each 1 ≤ i ≤ n/2, store max(ei, ei+1, . . . , en/2),
and for each n/2 < j ≤ n, store max(en/2+1, . . . , ej). Recurse separately on the two lists
e1, . . . , en/2 and en/2+1, . . . , en. Stop the recursion when the list size becomes 1.

If the user’s query is (i, j) with i ≤ n/2 and j > n/2, then we can return max(max(ei, ei+1, . . . , en/2),
max(en/2+1, . . . , ej)). If both i, j ≤ n/2 or i, j > n/2, then the answer is found recursively.

Let S(n) be the number of values stored for a list of length n. By construction, S(n) = O(n) +
2S(n/2), and therefore, S(n) = O(n log n).
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Problem 3. Longest Simple Cycle [30 points] (2 parts)

Given an unweighted, directed graph G = (V,E), a path 〈v1, v2, ..., vn〉 is a set of vertices such
that for all 0 < i < n, there is an edge from vi to vi+1. A cycle is a path such that there is also an
edge from vn to v1. A simple path is a path with no repeated vertices and, similarly, a simple cycle
is a cycle with no repeated vertices. In this question we consider two problems:

• LONGESTSIMPLEPATH: Given a graph G = (V,E) and two vertices u, v ∈ V , find a simple
path of maximum length from u to v or output NONE if no path exists.

• LONGESTSIMPLECYCLE: Given a graph G = (V,E), find a simple cycle of maximum
length in G.

(a) [20 points] Reduce the problem of finding the longest simple path to the problem of
finding the longest simple cycle. Prove the correctness of your reduction and show
that it runs in polynomial time in |V | and |E|.

Solution: Create a new graph G′. Copy all vertices and edges from G to G′. Then
add |V | more vertices to G′, w1, ..., w|V |. For 0 < i < |V |, create a directed edge from
wi to wi+1. Also create a directed edge from v to w1 and a directed edge from w|V | to
u. Run LONGESTSIMPLECYCLE on G′. If the longest simple cycle involves vertices
u and v, return the path from u to v in the cycle. Otherwise, output NONE.
Running Time: Creating the new graph takes O(|V | + |E|). We run LONGESTSIM-
PLECYCLE once. Therefore, the running time of the algorithm is O(|V | + |E| + L)
where L is the running time of LONGESTSIMPLECYCLE.
Correctness: If a path from u to v exists then c = 〈u, ..., v, w1, ..., w|V |〉 is a cycle in
G′. The cycle c contains at least |V |+2 vertices and, by construction, is the only cycle
containing the w vertices. Therefore, all other cycles must have length at most |V |.
Hence LONGESTSIMPLECYCLE will return this cycle if it exists and our algorithm
will return p = 〈u, ..., v〉. Since the cycle is simple, p must contain only vertices in V
and is thus the longest path from u to v in G. If the cycle does not exist, there is no
path from u to v and the algorithm correctly outputs NONE.
Note: This is only one possible reduction. People came up with others and that’s fine
so long as they are correct and polynomial.

Grading:
• 20/20 For any polynomial time reduction. The reduction did not have to be linear

to receive full credit.
• 19.5/20 if you added a weighted edge from v to u rather than a number of vertices

(the graph was unweighted)
• 18/20 If you gave the reduction of adding an edge from v to u, finding the con-

nected cluster containing v and u and running LSC on that. The problem is that
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the connected cluster containing v and u might have a simple cycle that does
not involve v and u longer than the one that does involve v and u. The whole
connected cluster is a cycle, but not a simple one.
• 17/20 For removing back edges
• 17/20 For removing all nodes u can’t reach
• 14/20 If you tried to remove edges one at a time, which does not work, but the

algorithm was still polynomial.
• 10/20 If you returned the longest path in the graph, but not necessarily from u to
v.
• 10/20 If you did the reduction correctly in the wrong direction
• From the above grades points were also subtracted for:

– -1 for no runtime analysis
– -2 for no correctness proof
– -1 if you forgot to add an edge from v to u and your reduction required one.

(b) [10 points] As we discussed in class, finding a longest simple path is NP-Hard. There-
fore, there is no known algorithm that, on input u, v, and G returns a longest simple
path from u to v in polynomial time. Using this fact (which you do not need to prove)
and Part (a), show that there is no known polynomial time algorithm that can find a
longest simple cycle in a graph.
Note: If you were unable to solve Part (a), you may assume an algorithm SIM-
PLEPATHFROMCYCLE for finding a longest simple path from u to v that runs in time
polynomial in L, |V |, and |E| where L is the running time of a black-box algorithm
for solving LONGESTSIMPLECYCLE.

Solution: If L is polynomial than the algorithm outlined in Part (a) gives a polyno-
mial time algorithm for finding the longest simple path in a graph. Contradiction.

Grading:
• 10/10 For anything like above proof. It was also fine to say that the reduction

means LSC must be at least as hard as LSP since we stressed that formulation in
class.
• 9/10 If you said you can use LSC to solve LSP and therefore by definition of NP-

Hard, LSC is also NP-Hard. The definition of NP-Hard is that all NP optimization
problems can be reduced to some problem in NP-Hard. So you need an extra step
just tying all the ends together, but it’s very close.
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Problem 4. Closest pair [28 points] (2 parts)

We are interested in finding the closest pair of points in the plane, closest in the sense of the
rectilinear distance (also called the Manhattan or L1 distance). The rectilinear distance between
two points p1 and p2 on the plane is defined as d(p1, p2) = |x1−x2|+|y1−y2|, where the x’s and y’s
are the first and second coordinates, respectively. In the first part we consider a one-dimensional
version of the problem as a warm-up. In both cases, coordinates of the points are real numbers
with k significant digits beyond the decimal point, k constant.

(a) [8 points] Warm up - Provide an efficient way to find a closest pair among n points in
the interval [0, 1] on the line. Full credit will be given to the most efficient algorithm
with a correct analysis.

Solution: Use radix sort on the n numbers (k digits representation). Then go through
the sorted list and calculate the distance between each point and the next one, keeping
a running minimum along the way. Radix sort will take O(kn), and distance calcula-
tions n − 1 time O(k), so an overall linear time O(n), since k is fixed. (Half points
only given to an O(n log n) answer with otherwise correct analysis.)

(b) [20 points] Case of the plane - A divide and conquer approach for n points in the
square [0, 1]× [0, 1]. Here is a possible strategy. Divide the set of points into two sets
of about half size: those on the right of the x-coordinate median, and those on the left.
Recursively, find the closest pair of points on the right, and the closest pair of points
on the left and let δr and δl be the corresponding distances. The overall closest pair is
either the minimum of these two options, or corresponds to a pair where one point is
on the right of the median and the other is on the left. Given δr and δl, there should be
an efficient way to find the latter. Explain how; then write the full recurrence for the
running time of this approach; and conclude with its overall running time.

Solution: Searching for closest pair of points that cross the median x-coordinate
can be limited to the vertical strip around the median line of width +/- δ where δ =
min{δr, δl}. By having the points belonging to this strip sorted according to their y-
coordinates, one can go through of all them bottom up, and for each check distances
to points above them within a vertical bound of δ (one can show that only the 7 points
above need to be checked for each point). In the worst case, all n points are in this
strip, so we end up with a recurrence for the running time of T (n) = 2T (n/2) +O(n)
and so T (n) = O(n log n).
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Problem 5. APSP Algorithm for Sparse Graphs [30 points] (3 parts)

Let G = (V,E) be a weighted, directed graph that can have some of the weights negative. Let
n = |V | and m = |E|, and assume that G is strongly connected, i.e., for any vertex u and v there
is a path from u to v in G.

We want to solve all-pairs-shortest-path problem (APSP) in G, i.e., we want to either find all the
vertex-to-vertex distances {δ(v, u)}v,u∈V , or report existence of a negative-length cycle. We will
design an algorithm for this task that runs in O(mn + n2 log n) time. (Note that when G is not
dense, i.e., when m is o(n2), the running time of this algorithm is asymptotically better than the
one of the Floyd-Warshall algorithm.)

(a) [5 points] Fix some vertex t ∈ V and consider the vertex potential λt(u) = δ(u, t)
where δ(u, t) is the shortest path from u ∈ V to t. Give an algorithm for calculating
λt(u) for all u ∈ V and analyze the running time.

Solution: Bellman-Ford in O(|V ||E|) time.

(b) [5 points] Show λt(u), the potential from Part (a), is a feasible potential even if some
of the original weights are negative.
Proof of the feasibility of λ:
Consider w∗(u, v) for any u, v ∈ V . By definition

w∗(u, v) := w(u, v)− λ(u) + λ(v) = w(u, v)− δ(u, t) + δ(v, t).

Since δ(u, v) ≤ w(u, v), we have that

w∗(u, v) = w(u, v)− δ(u, t) + δ(v, t) ≥ δ(u, v)− δ(u, t) + δ(v, t).

But, by triangle inequality we have that δ(u, t) ≤ δ(u, v) + δ(v, t), thus

w∗(u, v) ≥ δ(u, v)− δ(u, t) + δ(v, t) ≥ 0,

as desired.
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(c) [20 points] Show how you use the vertex potential from Parts (a) and (b) to solve
APSP in G in O(mn + n2 log n) time, including the time it takes to calculate the
vertex potential.

Solution: Choose any vertex t in G and run Bellman-Ford algorithm from it on the
transposed graph G to either compute all the distances δ(u, t) for every u ∈ V , or
detect a negative-length cycle. If such a cycle is detected in the transposed graph then
it also exists in the original graph, so just report its existence and terminate.
Otherwise, define the vertex potential λ(u) := δ(u, t) and look at the resulting reduced
weightw∗(u, v) := w(u, v)−λ(u)+λ(v) inG. SinceG is strongly connected (and we
now know it does not have negative-length cycles), all distances δ(u, t) are finite and
thus all λ(u)’s are finite as well. From the recitations (and pset 5B) we know that this
implies that λ is a feasible potential, i.e., for every u, v ∈ V w∗(u, v) is non-negative
(for the sake of completeness we include the proof of feasibility below).
Since the reduced weight w∗ is non-negative, one can run Dijkstra’s algorithm in G
from every node u ∈ V to compute all the vertex-to-vertex distances {δ∗(u, v)}u,v∈V
with respect to w∗. Next, extract the true vertex-to-vertex distances inG by computing
δ(u, v) = δ∗(u, v)− λ(v) + λ(u) for all u, v ∈ V , and output them.
The running time of the above algorithm is dominated by one execution of Bellman-
Ford algorithm – which is O(mn) time – and n executions of Dijkstra’s algorithm –
which is O(n(m + n log n)) = O(mn + n2 log n) time using the implementation of
Dijkstra with Fibonacci heaps. Thus the total running time is O(mn + n2 log n), as
desired.
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Problem 6. Airplane Scheduling [30 points] (3 parts)

Consider the runway reservation system from PS2. Recall that we kept track of requested landing
times from airplanes by storing them in a balanced binary search tree. In that problem set, we
required, for safety, that no landing time be within three minutes of any other landing time in the
tree. We showed we could insert into the tree, delete from the tree, and check the validity of a
landing time in O(log n) time.

Sometimes severe weather hits, and the 3-minute window between flights just isn’t safe, so a new
window size is determined. In these cases, an extra runway might be opened up at a nearby airport
to take flights which don’t fit within the new window. For all parts, you may use data structure
augmentations provided that you explain the augmentation. Its maintenance may not increase the
asymptotic running time of other operations, but you are not required to prove this.

(a) [5 points] Provide a very fast (constant-time) algorithm to determine if there are any
flights which are not valid with the new window so that the extra runway can start
opening immediately.

(b) [15 points] Also provide a slower algorithm which locates which specific flights are
not valid within the new window so they can be rescheduled. For example, assuming
a window of 3 minutes with flights at times 28, 31, 35, 40, 43, 48, 53, 57, 60, if the
window size were expanded to 4 minutes, the algorithm should return that 28, 31, 40,
43, 57, 60 are invalid.

Solution: Like question 2d on the problem set, but instead of tracking for the pres-
ence of a particular window size, track the minimum window of the subtree. Constant-
time lookup at the root to see if any window is smaller than the new window value.
Traversing the tree is both O(n) and O(k log n) to find all newly invalid times. With
bounds on the window size, we could keep a side-structure with all flights belonging
to a given window.
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(c) [10 points] Can the running time of this slower algorithm be improved if we assume
bounds on the maximum size the window could become?
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Problem 7. Traveling on a Budget [30 points] (2 parts)

Arthur Dent has $500 and 1000 hours to go from Cambridge, MA, to Berkeley, CA. He has a
map of the States represented as a directed graph G = (V,E). The vertices of the graph represent
towns, and there is a directed edge e = (A,B) from town A to town B if there is some means
of public transportation connecting the two towns. Moreover, the edge is labeled with a pair
(me, te), representing the cost me ∈ {0, 1, . . .} in dollars of transportation from A to B and the
time te ∈ {0, 1, . . .} in hours that it takes to go from A to B.

Arthur is interested in finding a path from Cambridge to Berkeley that does not cost more than
$500 and does not take more than 1000 hours, while also minimizing the objective 5M2 + 2T 2,
where M is the cost of the trip in dollars and T is the duration of the trip in hours. He was looking
for an algorithm that runs in time polynomial in |V | and |E| . . .

(a) [10 points] Due to his lack of knowledge in algorithms, he gave up on the idea of
respecting the budget and time constraints. At least he thought he could efficiently
find the path minimizing the objective 5M2 + 2T 2. He tried modifying Dijkstra’s
algorithm as follows: If an edge e was labeled (me, te), he assigned it a weight we =
5m2

e + 2t2e, and ran Dijkstra’s algorithm on the resulting weighted directed graph.
Show that Arthur’s algorithm may return incorrect results, i.e. return a path that does
not minimize the objective 5M2 + 2T 2.
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(b) [20 points] Now provide an algorithm that solves Arthur’s original problem in time
polynomial in |E| and |V |. Your algorithm should find the path that minimizes the
objective 5M2 + 2T 2, while at the same time respecting the constraints M ≤ 500 and
T ≤ 1000. Please describe your algorithm precisely, and justify its correctness and
running time. More credit will be given to faster algorithms, provided that the analysis
of the algorithm is correct.
[Hint 1: Use dynamic programming.]
[Hint 2: For each town A, integer values m ≤ 500 and t ≤ 1000, either there is a
path from Cambridge to A that requires cost m and time t, or there is not.]
Solution sketch: We construct a 501-by-15 sized matrix Mv at each vertex v so that
the (i, j)’th entry of Mv is 1 if there’s a path from the node for Cambridge to v of total
cost i and total duration j and is 0 otherwise. MCambridge is set to be 1 at entry (0, 0)
and 0 everywhere else.


