Introduction to Algorithms December 14, 2009
Massachusetts Institute of Technology 6.006 Fall 2009
Professors Srini Devadas and Constantinos (Costis) Daskalakis Final Exam

Final Exam

e Do not open this quiz booklet until directed to do so. Read all the instructions on this page.

e When the quiz begins, write your name on every page of this quiz booklet.

e You have 180 minutes to earn 150 points. Do not spend too much time on any one problem.
Read them all through first, and attack them in the order that allows you to make the most
progress.

e This quiz booklet contains 13 pages, including this one. Two extra sheets of scratch paper
are attached. Please detach them before turning in your quiz at the end of the exam period.

e This quiz is closed book. You may use three 8%" x 11” or A4 crib sheets (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.

e Write your solutions in the space provided. If you need more space, write on the back of the
sheet containing the problem. Pages may be separated for grading.

e Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite
known results.

e Show your work, as partial credit will be given. You will be graded not only on the correct-
ness of your answer, but also on the clarity with which you express it. Be neat.

e Good luck!

| Problem | Parts | Points | Grade | Grader | | Problem | Parts | Points | Grade | Grader |
1 10 30 5 1 20
2 1 10 6 1 15
3 1 10 7 1 20
4 1 20 8 3 25
Total 150

Go LuenS
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Problem 1. True or False [30 points] (10 parts)

For each of the following questions, circle either True, False or Unknown.

1.After hashing n keys into a hash table of size m that uses chaining to handle collisions, we
hash two new keys k; and k. Under the simple uniform hashing assumption, the probability
that k; and k, are hashed into the same table location is exactly 1/m with no dependence on

the number of kg: Sn.
Answer = @ False

2.Under the uniform hashing assumption, if we use a hash table of size m with open addressing
to hash 3 keys, the probability that the third inserted key needs exactly three probes before
being inserted into the table is exactly

Answer False

2
m(m—1)°

3.We use a hash table of size m with open addressing to hash n items. Under the uniform
hashing assumption, the expected cost to insert another element into the table is at most
1 + @, where @ = n/m is the average load.

Answer = True

4.There is a polynomial-time algorithm for the Knapsack problem if all items have size in
{0, 1} regardless of the bits required to describe their values and the size of the knapsack.

Answer = @ False Unknown

5.There exists a polynomial-time algorithm for finding longest simple paths in weighted di-

rected acyclic graphs.
Answer False Unknown
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6.Every search i roblem in NP can be solved in exponential time.

Answer = False Unknown

7.If there are negative edges in a graph but no negative cycles, Dijkstra’s algorithm still runs
correctly.

Answer = True

8.In a shortest path problem, if each arc length increases by k units, shortest path distances
increase by a multiple of k.

Answer = True

9.For any two functions f and g, we always have either f = O(g) or g = O(f).

Answer = True
5,9 oscllate

10.Dijkstra’s shortest path algorithm runs in O(V?3) time.

Answer =( True\\ False

The ouwahon 1§ ﬂ»jzok net 9‘,
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Problem 2. Data Structures [10 points]

Design a data structure that keeps a sequence of real numbers S = (zy, ..., Z,), and supports the
following operations in O(log n) time, where n is the current length of the sequence:

elnsert(y, 7): inserts y between z; and z;;

j
eSum(i, 7): compute the sum Z Z

t=1

Assume that the data structure is initially empty.
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Problem 3. Binary Trees [10 points]

Consider the family of binary trees of n nodes with the following invariant for every node. If n;
and n, are the number of nodes in the left and the right subtree respectively, then max{n;,ns} <
(min{ni,n2})? + 1. Is the height of these trees bounded by O(log n)? Justify your answer with a
rigorous argument or a counter-example.
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Problem 4. %** minimum in min-heap [20 points]

Present an O(k log k) time algorithm to return the £** minimum element in a min-heap H of size n,
where 1 < k < n. Partial credit will be given to less efficient solutions provided your complexity

analysis is accurate.
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Problem 5. 2-Satisfiability [20 points]

The 2-SAT problem is defined as follows: There are n Boolean variables z;, ..., z,, and a set of
m clauses. Each clause has two variables which are either in true (z;) or complemented (Z;) form.
Here are two examples:

1.(z1 + T2)(T1 + 24) (T3 + z4) (22 + z4) is satisfiable.
2.(z1 + 22)(T3 + T3) (23 + 21)(TT + z4)(T1 + T1) is not satisfiable.

For a 2-SAT formula to be satisfiable, every clause should be satisfiable. To satisfy a clause (z; +
T;) we can set z; = TRUE and/or z, = FALSE. If z; = FALSE and zo, = TRUE, the
clause is not satisfied. Example 1 is a satisfiable set of clauses because we can set z; = TRUE,
z3 = TRUE, z3 = FALSE and z4 = TRUE to satisfy all the clauses. There is no satisfying
assignment for Example 2. Variable assignments that are required to satisfy some of the clauses
conflict with assignments that are required to satisfy other clauses in this case. The 2-SAT problem
is to find a satisfying assignment, if one exists. We note that 2-SAT (unlike 3-SAT) can be solved
in polynomial time.

Here we are only concerned with a sufficiency check for unsatisfiability. That is, we want to devise
a graph-based algorithm that checks if a given set of clauses is unsatisfiable. We want this check
to be as efficient and as general as possible. To do this, we will represent the 2-SAT problem as a
graph. The two graphs for the examples above are shown below in Figures 1 and 2. Each graph has
2n vertices: there are two vertices for every variable corresponding to the true and complemented
forms, namely, z; = TRUE and z; = FALSE for each z;. The edges of the graph represent the
implied assignments for variables. For example, for every clause of the form (z; + Z3), we have
an edge from z; = FALSE to z; = FALSE and an edge from z; = TRUE to z; = TRUE (If we
set £; = FALSE, then we require zo = FALSE for this clause to be satisfied, similarly the other
case). '

z) = TRUE z, = FALSE

z4 = TRUE z; = TRUE

z4 = FALSE z, = FALSE

z3 = TRUE =z3 = FALSE

(.’L‘l + 27—2)(£L‘_1 + 51:4)(112_3 + 11:4)(11:2 + 11,‘4)

Figure 1: Example 1 satisfiable
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z; = TRUE 1, = FALSE

z4 = TRUE z, = TRUE

z4 = FALSE z, = FALSE

z3 = TRUE z3; = FALSE

(z1 + 22)(T2 + T3) (23 + 21)(T1 + 24) (T2 + T7)

Figure 2: Example 2 unsatisfiable

Devise an algorithm that operates on the graph derived from the 2-SAT problem. Your algorithm
should return FALSE if it discovers that the problem is unsatisfiable and UNKNOWN otherwise.
You will be graded on both the efficiency and generality of your algorithm.

The generality is defined in the following way. Let A and B be two correct algorithms. We say
that A is more general than B if the set of inputs for which .4 returns FALSE is a strict superset of
the set of inputs for which B returns FALSE.
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Problem 6. Second Shortest Paths [15 points]

In an acyclic directed weighted graph G with a specified source vertex s, let a(z) be the length of
the second shortest path from s to the vertex ¢. You can assume that all path lengths between any
two vertices are distinct. How can we determine «(z) for all vertices in G in O(V + E) time? You
will receive partial credit for less efficient algorithms if your complexity analysis is accurate.
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Problem 7. Common Vertex [20 points]

Given four vertices u, v, s and ¢ in a directed weighted graph G = (V, E') with non-negative edge
weights, present an algorithm to find out if there exists a vertex v, € V which is part of some
shortest path from u to v and also a part of some shortest path from s to ¢. The algorithm should
run in O(E + V'log V') time. Partial credit will be given to less efficient algorithms provided your
complexity analysis is accurate.

y DI
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Problem 8. The Ball Game (3 parts) [25 points]

Professors Devadas and Daskalakis play the following game. N balls are inserted into a tube whose
diameter matches the diameter of the balls, and therefore the balls cannot change positions inside
the tube. Each ball has a distinct value on it. Let A;, Ao, ..., Ay be the values of the balls in the
order they are inserted. The tube is opaque, but it is open at both ends, so only the first ball at each
end is visible (its value is visible as well). In each turn, a player removes one ball from the tube
from either end and collects as many points as the value of the ball. Players take alternate turns,
and each has a goal to maximize his score.

Professor Daskalakis has a reasonable strategy. He always removes the ball with a higher value (out
of the two visible balls). Professor Devadas, however, uses his infra-red vision that only people
who have been at MIT long enough have been secretly taught. Therefore, he can see all balls and
their values through the tube. (Note that this is not regarded cheating at MIT; it is attributed to
professor skills.) Of course, he wants to use his power to maximize his score.

Example: A = (3,7,1,2)

If Professor Devadas plays first, he will choose 2, then Professor Daskalakis will choose 3, then
Professor Devadas will choose 7 and finally Professor Daskalakis will take 1. So the score would
be Devadas: 9, Daskalakis: 4. If Professor Daskalakis plays first, he will choose 3, then professor
Devadas will choose 7, then Professor Daskalakis will choose 2 and finally Professor Devadas will
take 1. So the score would be Daskalakis: 5, Devadas: 8.

Develop an efficient DP algorithm that computes the maximum score Professor Devadas can
achieve when he plays first given, the array A;, A,, ..., Anx. Less efficient solutions will be
given partial credit provided the complexity analysis is accurate.

(@) [10 points] State the set of subproblems that you will use to solve this problem and
the corresponding recurrence relation to compute the solution.
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(b) [8 points] Describe an iterative (non-recursive) algorithm to compute the maximum
score. Analyze the running time of your algorithm.
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(©) [7 points] Modify your algorithm above to print the set of moves made by both pro-
fessors. Write down the modified algorithm below.
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