
Introduction to Algorithms November 17, 2010
Massachusetts Institute of Technology 6.006 Fall 2010
Professors Konstantinos Daskalakis and Patrick Jaillet Quiz 2

Quiz 2
• Do not open this quiz booklet until directed to do so. Read all the instructions on this page.
• When the quiz begins, write your name on every page of this quiz booklet.
• You have 120 minutes to earn 120 points. Do not spend too much time on any one problem.

Read them all through first, and attack them in the order that allows you to make the most
progress.
• This quiz is closed book. You may use two 81

2

′′ × 11′′ or A4 crib sheet (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.
• Write your solutions in the space provided. If you need more space, write on the back of the

sheet containing the problem. Pages may be separated for grading.
• Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite

known results.
• When writing an algorithm, a clear description in English will suffice. Pseudo-code is not

required.
• When asked for an algorithm, your algorithm should have the time complexity specified in

the problem with a correct analysis. If you cannot find such an algorithm, you will generally
receive partial credit for a slower algorithm if you analyze your algorithm correctly.
• Show your work, as partial credit will be given. You will be graded not only on the correct-

ness of your answer, but also on the clarity with which you express it. This quiz is shorter
than the first, so we expect you to take the time to write clear and thorough solutions.
• Good luck!

Problem Parts Points Grade Grader

1 2 2

2 4 38

3 2 20

4 1 20

5 3 20

6 1 20

Total 120

Name:
Friday

Recitation:
Aleksander

11 AM
Arnab
12 PM

Alina
3 PM

Matthew
4 PM



6.006 Quiz 2 Name 2

Problem 1. What is Your Name? [2 points] (2 parts)

(a) [1 point] Flip back to the cover page. Write your name there.

(b) [1 point] Flip back to the cover page. Circle your recitation section.



6.006 Quiz 2 Name 3

Problem 2. Short Answer [38 points] (4 parts)

(a) [9 points] Give an example of a graph such that running Dijkstra on it would give
incorrect distances.

(b) [9 points] Give an efficient algorithm to sort n dates (represented as month-day-year
and all from the 20th century), and analyze the running time.



6.006 Quiz 2 Name 4

(c) [10 points] Give an O(V + E)-time algorithm to remove all the cycles in a directed
graph G = (V,E). Removing a cycle means removing an edge of the cycle. If there
are k cycles in G, the algorithm should only remove O(k) edges.

(d) [10 points] Let G = (V,E) be a weighted, directed graph with exactly one negative-
weight edge and no negative-weight cycles. Give an algorithm to find the shortest
distance from s to all other vertices in V that has the same running time as Dijkstra.



6.006 Quiz 2 Name 5

Problem 3. Path Problems [20 points] (2 parts)

We are given a directed graph G = (V,E), and, for each edge (u, v) ∈ E, we are given a proba-
bility f(u, v) that the edge may fail. These probabilities are independent. The reliability π(p) of a
path p = (u1, u2, . . . uk) is the probability that no edge fails in the path, i.e.
π(p) = (1− f(u1, u2)) · (1− f(u2, u3)) . . . · (1− f(uk−1, uk)). Given a graph G, the edge failure
probabilities, and two vertices s, t ∈ V , we are interested in finding a path from s to t of maximum
reliability.

(a) [10 points] Propose an efficient algorithm to solve this problem. Analyze its running
time.

(b) [10 points] You tend to be risk-averse and in addition to finding a most reliable simple
path from s to t, you also want to find a next-most reliable simple path, and output
these two paths. Propose an algorithm to solve the problem, argue its correctness, and
give its asymptotic running time.



6.006 Quiz 2 Name 6

Problem 4. Flight Plans [20 points]

When an airline is compiling flight plans to all destinations from an airport it serves, the flight
plans are plotted through the air over other airports in case the plane needs to make an emergency
landing. In other words, flights can be taken only along pre-defined edges between airports. Two
airports are adjacent if there is an edge between them. The airline also likes to ensure that all the
airports along a flight plan will be no more than three edges away from an airport that the airline
regularly serves.

Given a graph with V vertices representing all the airports, the subset W of V which are served by
the airline, the distance w(u, v) for each pair of adjacent airports u, v, and a base airport s, give an
algorithm which finds the shortest distance from s to all other airports, with the airports along the
path never more than 3 edges from an airport in W .



6.006 Quiz 2 Name 7

Problem 5. Tree Searches [20 points] (3 parts)

In this problem we consider doing a depth first search of a perfect binary search treeB. In a perfect
binary search tree a node p can have either 2 or 0 children (but not just one child) with the usual
requirement that any node in the left subtree of p is less than p and node in the right subtree is
greater than p. In addition, all nodes with no children (leaves) must be at the same level of the
tree. To make B into a directed graph, we consider the nodes of B to be the vertices of the graph.
For each node p, we draw a directed edge from p to its left child and from p to its right child. An
example of a perfect binary search tree represented as a graph is shown in Figure 1.

7

5 9

4 6 8 10

Figure 1: An example of a perfect binary search tree represented as a directed graph.

(a) [6 points] We structure our adjacency function such that at a node p, we first run
DFS-VISIT on the left child of p and then on the right child. When we have finished
expanding a node (i.e. just before we return from DFS-VISIT), we print the node.
What is the first node printed? What is the last node printed? Give a short defense of
your answer.



6.006 Quiz 2 Name 8

(b) [7 points] Does DFS print out the nodes of the tree in increasing or decreasing order?
If yes, give a proof. If no, give a small counter example where the algorithm fails to
print out the nodes in increasing or decreasing order and show the output of DFS on
your example.

(c) [7 points] Recall that usually when doing depth first search, we use the parent struc-
ture to keep track of which vertices have been visited. During the search, if a vertex
v is in parent, the search will not run DFS-VISIT(v) again. Aspen Tu declares that
parent is unnecessary when doing a DFS of B. She says that whenever the algorithm
checks if a vertex v is in parent, the answer is always false. Do you agree with Aspen?
If you do, prove that she is correct. If you do not, give a small counter-example where
a depth first search through B will see a vertex twice. Remember, B is a directed
graph.



6.006 Quiz 2 Name 9

Problem 6. Computing Minimum Assembly Time [20 points]

As you might have heard, NASA is planning on deploying a new generation of space shuttles. Part
of this project is creating a schedule according to which the prototype of the space shuttle will be
assembled.

The assembly is broken down into atomic actions – called jobs – that have to be performed to build
the prototype. Each job has a processing time and a (possibly empty) set of required jobs that
need to be completed before this job can start – we will refer to this set as precedence constraint.
Given such specification, we call an assembly schedule valid if it completes all the jobs and all the
precedence constraints are satisfied.

Now, as the plan of the whole undertaking is being finalized, NASA has to compute the minimum
assembly time of the prototype. This time is defined as the minimum, taken over all the valid
assembly schedules, of the time that passes since the processing of the first scheduled job starts
until the processing of the last job finishes. (Note that we allow jobs to be processed in parallel, as
long as their precedence constraints are satisfied.)

As the prototype assembly is an immensely complex task, can you help NASA by designing an
algorithm that computes the minimum assembly time efficiently? Prove the correctness of your
algorithm and analyze its running time in terms of the number of jobs n and the total length of the
required jobs lists m.

Formally, the assembly is presented as a list of n jobs J1, . . . , Jn, and each job J has a specified
processing time, and the set of required jobs. We assume that there always is at least one valid
assembly schedule corresponding to the given specification.

Example:

Job: Processing time: Required jobs:
J1 1 {J6, J7}
J2 6 ∅
J3 4 {J2, J5}
J4 2 {J2, J3}
J5 3 ∅
J6 5 ∅
J7 7 ∅

Here, n = 7 and m = 6.

Solution: The minimum assembly time is 12.

(The corresponding schedule starts jobs J2, J5, J6, J7 at time 0, J3 at time 6, J1 at time 7, and J4 at
time 10.)



SCRATCH PAPER



SCRATCH PAPER


