
Introduction to Algorithms March 11, 2009
Massachusetts Institute of Technology 6.006 Spring 2009
Professors Sivan Toledo and Alan Edelman Quiz 1

Quiz 1
• Do not open this quiz booklet until directed to do so. Read all the instructions on this page.
• When the quiz begins, write your name on every page of this quiz booklet.
• You have 120 minutes to earn 120 points. Do not spend too much time on any one problem.

Read them all through first, and attack them in the order that allows you to make the most
progress.
• This quiz booklet contains 12 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your quiz at the end of the exam period.
• This quiz is closed book. You may use one 81

2

′′ × 11′′ or A4 crib sheet (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.
• Write your solutions in the space provided. If you need more space, write on the back of the

sheet containing the problem. Pages may be separated for grading.
• Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite

known results.
• Show your work, as partial credit will be given. You will be graded not only on the correct-

ness of your answer, but also on the clarity with which you express it. Be neat.
• Good luck!

Problem Parts Points Grade Grader

1 4 10

2 4 16

3 4 24

4 3 20

5 3 15

6 1 15

7 3 20

Total 120

Name:

Friday Recitation: Rishabh
10 AM

Rob
12 PM

Chieu
1 PM

Jason
2 PM

Matthew
3 PM

6.006 Quiz 1 Name 2

Problem 1. Asymptotic orders of growth [10 points] (4 parts)

For each pair of functions, circle the asymptotic relationships that apply. You do not need to give
a proof.

(a) f(n) =
√
n

g(n) = log n

Circle all that apply:

f = O(g) f = Θ(g) f = Ω(g)

(b) f(n) = 1
g(n) = 2

Circle all that apply:

f = O(g) f = Θ(g) f = Ω(g)

(c) f(n) = 1000 · 2n

g(n) = 3n

Circle all that apply:

f = O(g) f = Θ(g) f = Ω(g)

(d) f(n) = 5n log n
g(n) = n log 5n

Circle all that apply:

f = O(g) f = Θ(g) f = Ω(g)

6.006 Quiz 1 Name 3

Problem 2. True or False [16 points] (4 parts)

For each of the following questions, circle either T (True) or F (False). Explain your choice. (No
credit if no explanation given.)

(a) T F Performing a left rotation on a node and then a right rotation on the same node
will not change the underlying tree structure.
Explain:

(b) T F While inserting an element into a BST, we will pass the element’s predecessor
and successor (if they exist).
Explain:

(c) T F For a hash table using open addressing, if we maintain m = Θ(n), then we can
expect a good search and insert runtime.
Explain:

(d) T F If we know ahead of time all the keys that will ever be inserted into a hash table,
it is possible to design a hash table that guarantees O(1) lookup and insertion
times, while using O(n) space.
Explain:

6.006 Quiz 1 Name 4

Problem 3. Short Answer [24 points] (4 parts)

(a) Describe an efficient method to merge two balanced binary search trees with n ele-
ments each into a balanced BST. Give its running time.

(b) Suppose you are given a list of n elements such that the location of each element is at
most lg(lg n) elements away from the location it would be in if the list were sorted.
Describe an o(n lg n)-time method to sort the list and give its asymptotic running time.

6.006 Quiz 1 Name 5

(c) Suppose we have a hash table that resolves collisions using open addressing with linear
probing. Slots with no keys contain either an EMPTY marker or a DELETED marker.
Alyssa P. Hacker tries to reduce the number of DELETED markers; she proposes to
use the following rules in the delete method:

i. If the object in the next slot is EMPTY, then a DELETED marker is not necessary.
ii. If the object in the next slot has a different initial probe value, then a DELETED

marker is not necessary.

Determine whether each of the above rules guarantees that searches return a correct
result. Explain.

(d) An open-addressing hash table that resolves collisions using linear probing is initially
empty. Key k1 is inserted into the table first, followed by k2, and then k3 (the keys
themselves are drawn randomly from a universal set of keys).

i. Suppose k2 is deleted from the hash table and replaced by a DELETED marker.
What is the probability that searching for k3 requires exactly three probes?

ii. What is the probability that searching for k1 takes exactly two probes?

6.006 Quiz 1 Name 6

Problem 4. Piles [20 points] (3 parts)

The heaps that we discussed in class are binary trees that are stored in arrays; there are no explicit
pointers to children, because the index of children in the array can be computed given the index of
the parent.

This problem explores heaps (priority queues) that are represented like search trees, in which each
tree node is allocated separately and in which parent nodes have explicit pointers to their children.
We will call this data structure a Pile. A node in a pile can have zero to two children, and the value
stored in the node must be at least as large as the value stored at its children.

(a) What is the asymptotic cost of INSERT and EXTRACT-MAX in a pile of height h with
n nodes? Explain.

(b) An AVL Pile is a pile in which every node also stores the height of the subtree rooted
at the node, and in which the height of the children of a node can differ by at most
one. (The height of a missing child is defined to be −1.) What is the maximum height
of an AVL pile with n nodes?

(c) Describe a simple algorithm to insert a value into an AVL Pile while maintaining the
AVL property (ensuring that the height difference between siblings is at most one).
Argue that your algorithm indeed maintains the AVL property.

6.006 Quiz 1 Name 7

Problem 5. Rolling hashes [15 points] (3 parts)

Ben Bitdiddle, Louis Reasoner, and Alyssa P. Hacker are trying to solve the problem of searching
for a given string of length m in a text of length n.

They implement different algorithms that all follow the same general outline, and all make use of
a hash function h(x, p) which maps a string x to a number in the range 0 . . . p− 1.

The values returned by h(x, p) satisfy uniform hashing.

1 def string_search(text, substring):
2 m = len(substring)
3 n = len(text)
4 if m > n: return None
5 p = ... # differs based on implementation
6 target = h(substring, p)
7 for start in xrange(0, n-m + 1):
8 # the +1 includes the endpoint n-m
9 hvalue = ... # calculate h(x, p)

10 if hvalue == target:
11 if text[start:start+m] == substring:
12 return start
13 return None

(a) Ben Bitdiddle chooses p so that 1/2 ≤ α ≤ 1, where α = n/p. He implements the
hash operation on line 9 using a non-rolling hash:

hvalue = h(text[start:start+m], p)

In terms of m and n (not α), what is the asymptotic expected running time of Ben’s
algorithm? Explain your answer.

T (m,n) = Θ()

Explain:

6.006 Quiz 1 Name 8

(b) Alyssa P. Hacker recognizes that this is a good case to use a rolling hash. She de-
fines h so that she can calculate each hash value h(text[start:start+m], p)
from the previous value h(text[start-1:start-1+m], p) using a constant
number of arithmetic operations on values no larger than p.
Instead of calling the h function on the substring every time like Ben Bitdiddle does,
then, on line 9 she simply updates hvalue based on its previous value using these
arithmetic operations. She chooses p in the same manner as Ben.
In terms of m and n (not α), what is the asymptotic expected running time of Alyssa’s
algorithm? Explain your answer.

T (m,n) = Θ()

Explain:

6.006 Quiz 1 Name 9

(c) Louis Reasoner doesn’t want to worry about searching for a good prime number, so
on line 5 he simply sets p = 1009 and lets α vary. He implements the rolling hash
like Alyssa.
In terms of m and n (not α), what is the asymptotic expected running time of Louis’s
algorithm? Explain your answer.

T (m,n) = Θ()

Explain:

6.006 Quiz 1 Name 10

Problem 6. Treaps [15 points] (1 parts)

Ben Bitdiddle recently learned about heaps and binary search trees in his algorithms class. He was
so excited about getting to know about them, he thought of an interesting way to combine them to
create a new hybrid binary tree called a treap.

The treap T has a tuple value stored at each node (x, y) where he calls x the key , and y the priority
of the node. The keys follow the BST property (maintain the BST invariant) while the priorities
maintain the min-heap property. An example treap is shown below:

Describe an efficient algorithm for INSERT((x, y), T) that takes a new node with key value x and
priority y and inserts it into the treap T . Analyze the running time of your algorithm on a treap
with n nodes, and height h.

6.006 Quiz 1 Name 11

Problem 7. Amortized Successor [20 points] (3 parts)

The successor of a node x in a binary search tree T is the node in T with the smallest value that is
larger than the value of x. We assume in this question that all the values in the tree are distinct.

Consider the following code for determining the successor of some node x. A node is an object
with a value and pointers to its parent and left and right children.

1 # gets successor of x in tree rooted at root
2 def get_successor(x, root):
3 if x == None:
4 return None
5 elif x.right != None:
6 return get_minimum(x.right)
7 else:
8 while x != root and x.parent.right == x:
9 x = x.parent

10 return x.parent
11
12 # gets minimum node in tree rooted at x
13 def get_minimum(x):
14 if x == None:
15 return None
16 elif x.left == None:
17 return x
18 else:
19 return get_minimum(x.left)

(a) Show that the worst-case running time of get successor isO(lg n) on a balanced
BST and O(n) on a general BST.

6.006 Quiz 1 Name 12

The following procedure returns a list of all the values in a binary search tree by finding the mini-
mum and then locating the successor of each node in turn.

1 # returns ordered list of values in tree rooted at root
2 def spell_out(root):
3 node_list = []
4 current_node = get_minimum(root)
5 while current_node != root.parent:
6 node_list.append(current_node.value)
7 current_node = get_successor(current_node, root)
8 return node_list

(b) Since get successor is called once for each node in the tree, an upper bound
for the worst-case running time of spell out is O(n lg n) on a balanced BST and
O(n2) on a general BST. This bound, however, is not asymptotically tight.
Using amortized analysis, show that spell out runs in worst-case O(n) time on
any BST.
Hint: How many times is each edge encountered over the course of spell out?

(c) Give an asymptotically tight bound on the amortized cost of get successor over
the course of one call to spell out.

SCRATCH PAPER

SCRATCH PAPER

