
Introduction to Algorithms October 15, 2008
Massachusetts Institute of Technology 6.006 Fall 2008
Professors Ronald L. Rivest and Sivan Toledo Quiz 1

Quiz 1
• Do not open this quiz booklet until directed to do so. Read all the instructions on this page.
• When the quiz begins, write your name on every page of this quiz booklet.
• You have 120 minutes to earn 120 points. Do not spend too much time on any one problem.

Read them all through first, and attack them in the order that allows you to make the most
progress.
• This quiz booklet contains 10 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your quiz at the end of the exam period.
• This quiz is closed book. You may use one 81

2

′′ × 11′′ or A4 crib sheet (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.
• Write your solutions in the space provided. If you need more space, write on the back of the

sheet containing the problem. Do not put part of the answer to one problem on the back of
the sheet for another problem, since the pages may be separated for grading.
• Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite

known results.
• Show your work, as partial credit will be given. You will be graded not only on the correct-

ness of your answer, but also on the clarity with which you express it. Be neat.
• Good luck!

Problem Parts Points Grade Grader

1 8 10

2 5 15

3 3 10

4 4 10

5 3 25

6 3 25

7 3 25

Total 120

Name:

Recitation:
Christina
10 AM

Christina
11 AM

Jayant
12 PM

Jayant
1 PM

Jason
2 PM

Matthew
3 PM

6.006 Quiz 1 Name 2

Problem 1. Asymptotic growth [10 points]

For each pair of functions f(n) and g(n) given below:

• Write Θ in the box if f(n) = Θ(g(n))

• Write O in the box if f(n) = O(g(n))

• Write Ω in the box if f(n) = Ω(g(n))

• Write X in the box if none of these relations holds

If more than one such relation holds, write only the strongest one. No explanation needed. No
partial credit.

O, Θ, Ω or X f(n) g(n)

n2 n3

n lg n n

1 2 + sin n

3n 2n

4n+4 22n+2

n lg n n101/100

lg
√

10n lg n3

n! (n + 1)!

6.006 Quiz 1 Name 3

Problem 2. Miscellaneous True/False [15 points] (5 parts)

For each of the following questions, circle either T (True) or F (False). Explain your choice. (No
credit if no explanation given.)

(a) T F A hash table guarantees constant lookup time.
Explain:

(b) T F A non-uniform hash function is expected to produce worse performance for a
hash table than a uniform hash function.
Explain:

(c) T F If every node in a binary tree has either 0 or 2 children, then the height of the tree
is Θ(lg n).
Explain:

(d) T F A heap A has each key randomly increased or decreased by 1. The random
choices are independent. We can restore the heap property on A in linear time.
Explain:

(e) T F An AVL tree is balanced, therefore a median of all elements in the tree is always
at the root or one of its two children.
Explain:

6.006 Quiz 1 Name 4

Problem 3. Sorting short answer [10 points] (3 parts)

(a) What is the worst-case running time of insertion sort? How would you order the
elements in the input array to achieve the worst case?

(b) Name a sorting algorithm that operates in-place and in Θ(n log n) time.

(c) Write down the recurrence relation for the running time of merge sort. (You don’t
need to solve it.)

6.006 Quiz 1 Name 5

Problem 4. Hashing [10 points] (4 parts)

Give a hash table that uses chaining to handle collisions, how would using sorted python lists in
place of unsorted chains affect the following run times? Explain the circumstances of each of the
four cases and justify your choice.

(a) Inserting an element (best case) using unsorted chains is
Slower / Neither Slower Nor Faster / Faster than using sorted python lists.

(b) Inserting an element (worst case) using unsorted chains is
Slower / Neither Slower Nor Faster / Faster than a sorted python lists.

(c) Finding an element (best case) using unsorted chains is
Slower / Neither Slower Nor Faster / Faster than using sorted python lists.

(d) Finding an element (worst case) using unsorted chains is
Slower / Neither Slower Nor Faster / Faster than using sorted python lists.

6.006 Quiz 1 Name 6

Problem 5. Sporadically-Rebalanced Trees [25 points] (3 parts)

Ben Bitdiddle has invented a new kind of data structure, which he calls a sporadically-rebalanced
tree (SRT). Ben’s tree is a binary search tree, with a twist: every time the size of the SRT doubles,
it calls the REBALANCE procedure. That is, REBALANCE is called every time the SRT contains
n = 2k nodes, where k is a natural number. REBALANCE rebalances the tree such that the height
of an n element tree is Θ(log n).

(a) Does Ben’s scheme preserve the Θ(log n) height of an n element tree? If so, explain
why. If not, what is the worst-case height of an n element tree, in Θ notation?

(b) Argue briefly that rebalancing an n-node SRT can be done in Θ(n) time.

(c) What is the worst-case running time (in Θ notation) for a sequence of n INSERT oper-
ations in Ben’s scheme? Assume the SRT is initially empty.

6.006 Quiz 1 Name 7

Problem 6. Ben’s List Matcher [25 points] (3 parts)

Ben got tired of dealing with SRTs and decides to build a matcher for lists of numbers. Ben’s
matcher takes two lists of numbers and decides the lists are equal if and only if they contain exactly
the same set of numbers. For example, [1, 11, 13, 27] is equal to [11, 1, 27, 13],
but not equal to [1, 11, 13, 27, 2] or [1, 11, 27]. Assume the lists do not contain
multiple instances of the same number.

Ben implements his function in Python as follows:

def listcmp(list1, list2):
for num in list1:

if num not in list2:
return False

else:
Remove the first occurrence of num from list2
list2.remove(num)

Return True iff list2 is now empty
return list2 == []

(The python function L.remove(x) for a list L is a mutator that removes the first occurrence of
x from L. Its implementation scans the list L from the beginning until it finds x.)

(a) Let n be the length of list1 and m be the length of list2. What is the worst-case
running time of Ben’s implementation? Justify your answer.

6.006 Quiz 1 Name 8

(b) Louis Reasoner suggests Ben implement his function with an AVL tree. In Louis’ im-
plementation, the elements of list1 are inserted into an AVL tree, then the elements
of list2 are searched for and deleted if found from the AVL tree. The procedure
returns True if and only if every element of list2 was found in the tree, and the
tree is empty after the elements of list2 are removed.
What is the worst-case running time of Louis’ implementation? Justify your answer.

(c) Assume the elements of list1 and list2 are all in {1, 2, ..., k}. Describe (in En-
glish) a solution with a Θ(k + n) worst-case running time.

6.006 Quiz 1 Name 9

Problem 7. Dynamic Medians [25 points] (3 parts)

Marianne Midling needs a data structure “DM” for maintaining a set S of numbers, supporting the
following operations:

• Create an empty set S

• Add a new given number x to S

• Return a median of S. (Note that if S has even size, there are two medians; either may
be returned. A median of a set of n distinct elements is larger than or equal to exactly
b(n + 1)/2c or d(n + 1)/2e elements.)

(Assume no duplicates are added to S.)

Marianne proposes to implement this “dynamic median” data structure DM using a max-heap A
and a min-heap B, such that every element in A is less than every element in B, and the size of A
equals the size of B, or is one less.

To return a median of S, she proposes to return the minimum element of B.

(a) Argue that this is correct (i.e., that a median is returned).

6.006 Quiz 1 Name 10

(b) Explain how to add a new number y to this data structure, while maintaining the
relevant properties.

(c) How much time does your solution to (b) take, in the worst case?

SCRATCH PAPER

SCRATCH PAPER

