
Introduction to Algorithms May 21, 2009
Massachusetts Institute of Technology 6.006 Spring 2009
Professors Sivan Toledo and Alan Edelman Final Exam

Final Exam
• Do not open this quiz booklet until directed to do so. Read all the instructions on this page.
• When the quiz begins, write your name on every page of this quiz booklet.
• You have 180 minutes to earn 200 points. Do not spend too much time on any one problem.

Read them all through first, and attack them in the order that allows you to make the most
progress.
• This quiz booklet contains 12 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your quiz at the end of the exam period.
• This quiz is closed book. You may use three 81

2

′′ × 11′′ or A4 crib sheets (both sides). No
calculators or programmable devices are permitted. No cell phones or other communications
devices are permitted.
• Write your solutions in the space provided. If you need more space, write on the back of the

sheet containing the problem. Pages may be separated for grading.
• Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite

known results.
• Show your work, as partial credit will be given. You will be graded not only on the correct-

ness of your answer, but also on the clarity with which you express it. Be neat.
• Good luck!

Problem Parts Points Grade Grader Problem Parts Points Grade Grader

1 8 24 5 1 24

2 4 32 6 1 24

3 3 24 7 1 24

4 3 24 8 1 24

Total 200

Name:

6.006 Final Exam Name 2

Problem 1. True or False [24 points] (8 parts)

For each of the following questions, circle either T (True) or F (False). Explain your choice. (No
credit if no explanation given.)

(a) T F There exists an algorithm to build a binary search tree from an unsorted list in
O(n) time.
Explain:

(b) T F There exists an algorithm to build a binary heap from an unsorted list in O(n)
time.
Explain:

(c) T F To solve the SSSP problem for a graph with no negative-weight edges, it is nec-
essary that some edge be relaxed at least twice.
Explain:

(d) T F On a connected, directed graph with only positive edge weights, Bellman-Ford
runs asymptotically as fast as Dijkstra.
Explain:

6.006 Final Exam Name 3

(e) T F A Givens rotation requires O(1) time.
Explain:

(f) T F In the worst case, merge sort runs in O(n2) time.
Explain:

(g) T F There exists a stable implementation of merge sort.
Explain:

(h) T F An AVL tree T contains n integers, all distinct. For a given integer k, there exists
a Θ(lg n) algorithm to find the element x in T such that |k − x| is minimized.
Explain:

6.006 Final Exam Name 4

Problem 2. Short Answer [32 points] (4 parts)

(a) The eccentricity ε(u) of a vertex u in a connected, undirected, unweighted graph G is
the maximum distance from u to any other vertex in the graph. That is, if δ(u, v) is
the shortest path from u to v, then ε(u) = maxv∈V δ(u, v).
Give an efficient algorithm to find the eccentricity of a given vertex s. Analyze its
running time.

(b) What is the asymptotic cost of solving a linear system of equations with n−1 equations
of the form

ai,ixi + ai,i+1xi+1 = bi i = 1, . . . , n− 1

and one equation of the form

an,1x1 + an,2x2 + · · ·+ an,nxn = bn

(none of the a’s in this equation are zero). The a’s and b’s are given numbers and
the x’s are unknowns. Assume that we use Givens rotations to reduce the coefficient
matrix to a triangular form. Justify your answer.

6.006 Final Exam Name 5

(c) Suppose a hash function h maps arbitrary keys to values between 0 and m− 1, inclu-
sive. We hash n keys, k1, k2, . . . , kn. If h(ki) = h(kj), we say that ki and kj collide.
Assuming simple uniform hashing, how should we choose m (in terms of n) such that
the expected number of collisions is O(1)? Justify your answer.

(d) Suppose you have a directed acyclic graph with n vertices and O(n) edges, all having
nonnegative weights. Propose an efficient method of finding the shortest path to each
vertex from a single source, and give its running time in terms of n.

6.006 Final Exam Name 6

Problem 3. Judge Jill [24 points] (3 parts)

Judge Jill has created a web site that allows people to file complaints about one another. Each
complaint contains exactly two names: that of the person who filed it and that of the person he/she
is complaining about.

Jill had hoped to resolve each complaint personally, but the site has received so many complaints
that she has realized she wants an automated approach.

She decides to try to label each person as either good or evil. She only needs the labeling to be
consistent, not necessarily correct. A labeling is consistent if every complaint labels one person
as good and the other person as evil, and no person gets labeled both as good and evil in different
complaints.

(a) [8 points] Propose a way to model the consistent labeling problem as a graph problem.

6.006 Final Exam Name 7

(b) [10 points] Propose an efficient algorithm to consistently label all the names as good
or evil, or to decide that no such classification exists. Use the graph model you pro-
posed in the previous part of the problem. Analyze the running time of the algorithm.

(c) [6 points] Later, Judge Jill wants to be more thorough. She will interview some
people to figure out who is good and who is evil. She can always determine whether a
person is good or evil by interviewing him or her. Assuming that one person in every
complaint is good and the other is evil, what is the minimum number of people she
needs to interview to correctly classify all the people named in the complaints?

6.006 Final Exam Name 8

Problem 4. Bitdiddle Bins [24 points] (3 parts)

Ben Bitdiddle has devised a new data structure called a Bitdiddle Bin. Much like an array or a
set, you can INSERT values into it, and you can LOOKUP values to see if they are contained in the
structure. (He’ll figure out DELETE later.)

A Bitdiddle Bin is implemented as a pair of lists (arrays), designated the neat list and the messy
list, with these properties:

• The neat list is always in sorted order. (The messy list may or may not be sorted.)

• The messy list has a size of at most
√
n, where n is the total number of values in the entire

Bitdiddle Bin.

The LOOKUP algorithm for a Bitdiddle Bin is as follows:

1. Use binary search to look for the value in the neat list.

2. If it wasn’t in the neat list, iterate over the entire messy list to look for the value.

The INSERT algorithm is as follows:

1. Append the value to the messy list.

2. If the messy list is now too big, CLEANUP.

This CLEANUP subroutine is run whenever the messy list grows beyond
√
n items:

1. Sort the messy list.

2. Merge the messy list with the neat list.

3. The merge result is the new neat list. The new messy list is empty.

(a) [4 points] What is the worst-case asymptotic runtime of LOOKUP on a Bitdiddle Bin?

6.006 Final Exam Name 9

(b) [8 points] What is the worst-case asymptotic runtime of INSERT on a Bitdiddle Bin?
Explain.

(c) [12 points] What is the amortized asymptotic runtime of each INSERT operation,
when inserting n values into an empty Bitdiddle Bin? Explain.

6.006 Final Exam Name 10

Problem 5. Local Minimum [24 points]

Consider an array A containing n distinct integers. We define a local minimum of A to be an x
such that x = A[i], for some 0 ≤ i < n, with A[i − 1] > A[i] and A[i] < A[i + 1]. In other
words, a local minimum x is less than its neighbors in A (for boundary elements, there is only one
neighbor). Note that A might have multiple local minima.

As an example, suppose A = [10, 6, 4, 3, 12, 19, 18]. Then A has two local minima: 3 and 18.

Of course, the absolute minimum of A is always a local minimum, but it requires Ω(n) time to
compute.

Propose an efficient algorithm to find some local minimum of A, and analyze the running time of
your algorithm.

6.006 Final Exam Name 11

Problem 6. Straits [24 points]

Let G be a connected, weighted, undirected graph. All the edge weights are positive. An edge e
is a strait between vertices u and v if it has weight `, is on a path from u to v whose other edges
weigh ` or more, and every path between u and v contains an edge of weight ` or less. In other
words, to go from u to v you must cross an edge of weight `, but you do not need to cross edges
lighter than `.

Describe an efficient algorithm for finding the weight of the strait between every pair of vertices in
G. Analyze the running time of the algorithm.

Hint: Use a |V |-by-|V | table to keep track of the weights of all the straits. Initialize it so that it is
correct for a graph with no edges. Then add the edges one by one.

6.006 Final Exam Name 12

Problem 7. The Cake Is a Lie! [24 points]

At Aperture Bakeries, every cake comes with a binary boolean-valued tree indicating whether or
not it is available. Each leaf in the tree has either a true or a false value. Each of the remaining
nodes has exactly two children and is labeled either and or or; the value is the result of recursively
applying the operator to the values of the children. One example is the following tree:

and

and

falsetrue

or

falsetrue

If the root of a tree evaluates to false, like the one above, the cake is a lie and you cannot have it.
Any true cake is free for the taking. You may modify a tree to make it true; the only thing you can
do to change a tree is to turn a false leaf into a true leaf, or vice versa. This costs $1 for each leaf
you change. You can’t alter the operators or the structure of the tree.

Cake is good. Cheap cake is even better. Describe an efficient algorithm to determine the minimum
cost of a cake whose tree has n nodes, and analyze its running time.

6.006 Final Exam Name 13

Problem 8. I Am Locutus of Borg, You Will Respond To My Questions [24 points]
Upon arrival at the planet Vertex T, you and Ensign Treaps are captured by the Borg. They promptly
throw the ensign out of the airlock. You had better solve their problem, lest you share his fate.

0 1

1 1 1 1 1

1 1 0

1

1

1 1 1 1

001 0

1

2

3

0 1 2 3 4

0

4 1 1 01 1

The Vertex T parking lot is an n × n matrix A. There are already
a number of spaceships parked in the lot. For 0 ≤ i, j < n, let
A[i][j] = 0 if there is a ship occupying position (i, j), and 1 other-
wise.

The Borg want to find the largest square parking space in which to
park the Borg Cube. That is, find the largest k such that there exists
a k × k square in A containing all ones and no zeros. In the example
figure, the solution is 3, as illustrated by the 3× 3 highlighted box.

Describe an efficient algorithm that finds the size of the largest square parking space inA. Analyze
the running time of your algorithm.

Hint: Call A[0][0] be the top-left of the parking lot, and call A[n − 1][n − 1] the bottom-right.
Use dynamic programming, with the subproblem S[i, j] being the side length of the largest square
parking space whose bottom-right corner is at (i, j).

SCRATCH PAPER

SCRATCH PAPER

