
6.006 Introduction to Algorithms Recitation 15 November 4, 2011

BFS for shortest paths
In the general case, BFS can’t be used to find shortest paths, because it doesn’t account for edge
weights. If every edge weight is the same (say, one), however, the path that it finds is a shortest
path. How can we use this to our advantage?

Say that we have a graph G = (V,E) with small, positive integer edge weights (∀e ∈ E, the
cost c(e) ≤ k) and we want the shortest s-t path. Normally we’d be thinking Dijkstra; we have
nonnegative edge weights and we only want a single-source shortest path. Dijkstra’s algorithm, as
you recall, has time complexity O(E + V lg V).

Can we do better? A common technique in applying graph algorithms is to transform the graph
G = (V,E) into another graph G′ = (V ′, E ′) that is easier to run the algorithms we’ve studied on,
and then to transform the result you found on G′ back to the result you really wanted on G.

Here, we’ll start with the same vertices V , but we’ll replace each edge e = (u, v) ∈ E with
a u-v path of length c(e). (Some extra vertices will be created, too, to link the edges in the path.)
The total weight of this u-v path in G′ will be c(e), the same as the weight of the (single-edge) u-v
path in G. Thus, a shortest s-t path in G′ corresponds directly to a shortest s-t path in G, although
we’ll have to walk the path and discard all of the intermediate vertices that don’t exist in G (and
which we don’t really care about, having created only for the purposes of solving the problem).

Most interestingly, every edge e ∈ E ′ has c(e) = 1, so (like we discussed initially) we can use
BFS to find a shortest path.

We know that BFS isO(V +E) forG = (V,E), but we ran it onG′. So it’s more accurate to say
that the time complexity of our algorithm isO(|V ′|+|E ′|). How can we express this in terms of |V |
and |E|? Well, we create at most k edges inG′ for each edge inG, so |E ′| = O(k|E|). We retain the
original vertices and at at most k−1 intermediate vertices per edge, so |V ′| = O(|V |+(k−1)|E|).
Thus, the BFS execution has time complexity O(|V |+ k|E|), which should make sense.

We also need to account for the time complexity of the transformation to and from G′. Here,
creating G requires an O(|V |)-time operation (copying the original vertices) and an O(k|E|)-
time operation (creating the O(k) vertices and edges for each original edge). Transforming back
(converting our shortest path in G′ to a shortest path in G) just requires walking the path and
discarding any vertex not in G, which is O(k|E|), the maximum length of an acyclic path in G′.
None of these things increases the time complexity of our algorithm, so we’re done.

The algorithm we’ve described has total time complexity O(|V | + k|E|), like was mentioned
previously; Dijkstra is O(|E| + |V | lg |V |). Which is better, naturally, depends on your specific
graph and how large k is. The general technique, however, of creating a graph like our G′ that has
an interesting property G doesn’t have (here, equal edge weights) is useful both in theory and in
practice.

Traffic planning
Ben Bitdiddle is planning to drive across a city, and has represented the road network as a graph.
Each edge has a weight c(e, t) describing how much fuel he’ll burn idling at badly-timed traffic
lights and honking at awful drivers. c is also a function of time because some roads are more

6.006 Introduction to Algorithms Recitation 15 November 4, 2011

congested at different times during the day. He needs to arrive at some point in the next 12 hours,
but beyond that, his objective is to minimize fuel consumption.

Let’s create a new graph G′ that contains several copies of the vertices vi ∈ V from the original
graph G. We’ll use 13 copies, one for t = 0 and then for each hour up until Ben’s deadline. We’ll
name these vertices vi,t. We create an edge between two vertices vi,t and vj,t′ if and only if it’s
possible to drive between points i and j in t′− t time (suppose we have a time lookup table to find
out about this). The weight of this edge is the weight of the (i, j) edge in G which depends on t as
well. We can also create some other edges; for example, Ben is always free to turn his car off and
wait. This advances time and consumes no fuel (i.e., is a zero-weight edge).

The shortest path from our starting location at t = 0 (vs,0 in G′) to our destination at t = 12
(vd,12) will be a solution to the problem!

How I met your midterm
This problem appeared on Quiz 2 in Spring 2011.

Ted and Marshall are taking a roadtrip from Somerville to Vancouver (that’s in Canada). Be-
cause it’s a 52-hour drive, Ted and Marshall decide to switch off driving at each rest stop they visit;
however, because Ted has a better sense of direction than Marshall, he should be driving both when
they depart and when they arrive (to navigate the city streets).

Given a route map represented as a weighted undirected graph G = (V,E,w) with positive
edge weights, where vertices represent rest stops and edges represent routes between rest stops,
devise an efficient algorithm to find a route (if possible) of minimum distance between Somerville
and Vancouver such that Ted and Marshall alternate edges and Ted drives the first and last edge.

Solution
There are two correct and efficient ways to solve this problem. The first solution makes a new graph
G′. For every vertex u in G, there are two vertices uM and uT in G′: these represent reaching the
rest stop u when Marshall (for uM) or Ted (for uT) will drive next. For every edge (u, v) in G,
there are two edges in G′: (uM , vT) and (uT , vM). Both of these edges have the same weight as
the original.

We run Dijkstra’s algorithm on this new graph to find the shortest path from SomervilleT to
VancouverM (since Ted drives to Vancouver, Marshall would drive next if they continued). This
guarantees that we find a path where Ted and Marshall alternate, and Ted drives the first and last
segment. Constructing this graph takes linear time, and running Dijkstra’s algorithm on it takes
O(V log V +E) time with a Fibonacci heap (it’s just a constant factor worse than running Dijkstra
on the original graph).

The second correct solution is equivalent to the first, but instead of modifying the graph, we
modify Dijkstra’s algorithm. Dijkstra’s algorithm will store two minimum distances and two parent
pointers for each vertex u: the minimum distance dodd using an odd number of edges, and the
minimum distance deven using an even number of edges, along with their parent pointers πodd
and πeven. (These correspond to the minimum distance and parent pointers for uT and uM in the

6.006 Introduction to Algorithms Recitation 15 November 4, 2011

previous solution). In addition, we put each vertex in the priority queue twice: once with dodd as
its key, and once with deven as its key (this corresponds to putting both uT and uM in the priority
queue in the previous solution).

When we relax edges in the modified version of Dijkstra, we check whether v.dodd > u.deven+
w(u, v), and vice versa. One important detail is that we need to initialize Somerville.dodd to ∞,
not 0. This algorithm has the same running time as the previous one.

A correct but less efficient algorithm used Dijkstra, but modified it to traverse two edges at a
time on every step except the first, to guarantee a path with an odd number of edges was found.
Many students incorrectly claimed this had the same running time as Dijkstra’s algorithm; however,
computing all the paths of length 2 (this is the square of the graph G) actually takes a total of
O(V E) time, whether you compute it beforehand or compute it for each vertex when you remove
it from Dijkstra’s priority queue. This solution got 5 points.

The most common mistake on the problem was to augment Dijkstra (or Bellman-Ford) by
keeping track of either the shortest path’s edge count for each vertex, or the parity of the number
edges in the shortest path. This is insufficient to guarantee that the shortest odd-edge-length path
is found, and this solution got 2 points. Here is an example of a graph where the algorithm fails:
once the odd-edge-count path of weight 1 to A is found, Dijkstra will ignore the even-edge-count
path of weight 4 to A since it has greater weight. As a result, the odd-edge-count path to V will be
missed entirely.

S A V

B

1 1

2 2

Another common mistake was to use Dijkstra, and if the path Dijkstra found had an even
number of edges, to attempt to add or remove edges until a path with an odd number of edges was
obtained. In general, there is no guarantee the shortest path with an odd number of edges is at all
related to the shortest path with an even number of edges.

Some algorithms ran Dijkstra, and if Dijkstra found a path with an even number of edges,
removed some edge or edges from the graph and re-ran Dijkstra. This algorithm fails on the
following graph, where the shortest path with an odd number of edges uses all the edges and
vertices (note that we visit A twice; the first time, Ted drives to A, and the second time, Marshall
drives to A):

One last common mistake was to attempt to use Breadth-First Search to label each vertex as an
odd or even number of edges from Somerville (or sometimes to label them as odd, even, or both).
This does not help: the smallest-weight path with an odd number of edges could go through any
particular vertex after having traversed an odd or even number of edges, and BFS will not correctly
predict which. These solutions got 0 points.

Algorithms which returned the correct answer but with exponential running time got at most 2
points.

