Menu

• Priority Queues
• Heaps
• Heapsort
Priority Queue

A data structure implementing a set \(S \) of elements, each associated with a key, supporting the following operations:

- \(\text{insert}(S, x) : \) insert element \(x \) into set \(S \)
- \(\text{max}(S) : \) return element of \(S \) with largest key
- \(\text{extract_max}(S) : \) return element of \(S \) with largest key and remove it from \(S \)
- \(\text{increase_key}(S, x, k) : \) increase the value of element \(x \)'s key to new value \(k \)
 (assumed to be as large as current value)
Heap

- Implementation of a priority queue
- An array, visualized as a nearly complete binary tree
- **Max Heap Property**: The key of a node is ≥ than the keys of its children
 (Min Heap defined analogously)
Heap as a Tree

root of tree: first element in the array, corresponding to $i = 1$

parent(i) = $i/2$: returns index of node's parent

left(i) = $2i$: returns index of node's left child

right(i) = $2i + 1$: returns index of node's right child

No pointers required! Height of a binary heap is $O(\lg n)$
Heap Operations

build_max_heap : produce a max-heap from an unordered array

max_heapify : correct a single violation of the heap property in a subtree at its root

insert, extract_max, heapsort
Max_heapify

• Assume that the trees rooted at left(i) and right(i) are max-heaps

• If element $A[i]$ violates the max-heap property, correct violation by “trickling” element $A[i]$ down the tree, making the subtree rooted at index i a max-heap
Node 10 is the left child of node 5 but is drawn to the right for convenience.
Max_heapify (Example)

Call MAX_HEAPIFY(A, 4)
because max_heap property
is violated
Max_heapify (Example)

No more calls

Time=? O(log n)
Max_Heapify Pseudocode

\[l = \text{left}(i) \]
\[r = \text{right}(i) \]
if \((l \leq \text{heap-size}(A) \text{ and } A[l] > A[i])\)
 then largest = \(l\) else largest = \(i\)
if \((r \leq \text{heap-size}(A) \text{ and } A[r] > A[\text{largest}])\)
 then largest = \(r\)
if largest \(\neq i\)
 then exchange \(A[i]\) and \(A[\text{largest}]\)
Max_Heapify(A, largest)
Build_Max_Heap(A)

Converts $A[1\ldots n]$ to a max heap

Build_Max_Heap(A):
 for $i=n/2$ downto 1
 do Max_Heapify(A, i)

Why start at $n/2$?

Because elements $A[n/2 + 1 \ldots n]$ are all leaves of the tree
$2i > n$, for $i > n/2 + 1$

Time=? O(n \log n) via simple analysis
Build_Max_Heap(A) Analysis

Converts $A[1\ldots n]$ to a max heap

Build_Max_Heap(A):
 for $i=n/2$ downto 1
do Max_Heapify(A, i)

Observe however that Max_Heapify takes $O(1)$ for time for nodes that are one level above the leaves, and in general, $O(l)$ for the nodes that are l levels above the leaves. We have $n/4$ nodes with level 1, $n/8$ with level 2, and so on till we have one root node that is $\lg n$ levels above the leaves.
Build_Max_Heap(A) Analysis

Converts A[1…n] to a max heap

Build_Max_Heap(A):
 for i=n/2 downto 1
 do Max_Heapify(A, i)

Total amount of work in the for loop can be summed as:
\[
\frac{n}{4} (1 \text{ c}) + \frac{n}{8} (2 \text{ c}) + \frac{n}{16} (3 \text{ c}) + \ldots + 1 (\lg n \text{ c})
\]

Setting \(\frac{n}{4} = 2^k \) and simplifying we get:
\[
c \cdot 2^k (\frac{1}{2^0} + \frac{2}{2^1} + \frac{3}{2^2} + \ldots (k+1)/2^k)
\]

The term is brackets is bounded by a constant!

This means that Build_Max_Heap is \(O(n) \)
Build-Max-Heap Demo

MAX-HEAPIFY (A,5)
no change
MAX-HEAPIFY (A,4)

MAX-HEAPIFY (A,3)
Build-Max-Heap Demo

MAX-HEAPIFY (A,2)

MAX-HEAPIFY (A,1)
Build-Max-Heap
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

 now max element is at the end of the array!

4. Discard node n from heap
 (by decrementing heap-size variable)
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;
2. Find maximum element A[1];
3. Swap elements A[n] and A[1]:
 now max element is at the end of the array!
4. Discard node n from heap
 (by decrementing heap-size variable)
5. New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.
Heap-Sort

Sorting Strategy:

1. Build Max Heap from unordered array;

2. Find maximum element A[1];

3. Swap elements A[n] and A[1]: now max element is at the end of the array!

4. Discard node n from heap (by decrementing heap-size variable)

5. New root may violate max heap property, but its children are max heaps. Run max_heapify to fix this.

6. Go to Step 2 unless heap is empty.
Heap-Sort Demo

Max_heapify(A,1)
Heap-Sort Demo

MAX_HEAPIFY (A, 1)
Heap-Sort

Running time:

after n iterations the Heap is empty
every iteration involves a swap and a max_heapify
operation; hence it takes $O(\log n)$ time

Overall $O(n \log n)$