Lecture 17: Shortest Paths III: Bellman-Ford

Lecture Overview

- Review: Notation
- Generic S.P. Algorithm
- Bellman-Ford Algorithm
 - Analysis
 - Correctness

Recall:

\[
\text{path } p = \langle v_0, v_1, \ldots, v_k \rangle \\
\quad \quad \quad \quad (v_i, v_{i+1}) \in E \quad 0 \leq i < k \\
\text{ } w(p) = \sum_{i=0}^{k-1} w(v_i, v_{i+1})
\]

Shortest path weight from \(u \) to \(v \) is \(\delta(u,v) \). \(\delta(u,v) \) is \(\infty \) if \(v \) is unreachable from \(u \), undefined if there is a negative cycle on some path from \(u \) to \(v \).

![Figure 1: Negative Cycle.](image-url)
Generic S.P. Algorithm

Initialize: for \(v \in V \):
\[
\begin{align*}
 d[v] & \leftarrow \infty \\
 \Pi[v] & \leftarrow \text{NIL}
\end{align*}
\]
\(d[S] \leftarrow 0 \)

Main: repeat

select edge \((u, v)\) [somehow]

"Relax" edge \((u, v)\)
\[
\begin{align*}
 \text{if } d[v] > d[u] + w(u, v) : \\
 d[v] & \leftarrow d[u] + w(u, v) \\
 \Pi[v] & \leftarrow u
\end{align*}
\]
until you can’t relax any more edges or you’re tired or . . .

Complexity:

Termination: Algorithm will continually relax edges when there are negative cycles present.

\[
\begin{align*}
 0 & \quad 1 & \quad -1 & \quad \varnothing \\
 1 & \quad 2 & \quad -4 & \quad 4
\end{align*}
\]

Figure 2: Algorithm may not terminate due to negative cycles.

Complexity could be exponential time with poor choice of edges.
Figure 3: Algorithm could take exponential time. The outgoing edges from v_0 and v_1 have weight 4, the outgoing edges from v_2 and v_3 have weight 2, the outgoing edges from v_4 and v_5 have weight 1.

5-Minute 6.006

Figure 4 is what I want you to remember from 6.006 five years after you graduate!

Bellman-Ford(G, W, s)

```plaintext
Initialize()
for $i = 1$ to $\lvert V \rvert - 1$
  for each edge $(u, v) \in E$
    Relax$(u, v)$
  for each edge $(u, v) \in E$
    do if $d[v] > d[u] + w(u, v)$
      then report a negative-weight cycle exists

At the end, $d[v] = \delta(s, v)$, if no negative-weight cycles.
```

Theorem:
If $G = (V, E)$ contains no negative weight cycles, then after Bellman-Ford executes $d[v] = \delta(s, v)$ for all $v \in V$.
Exponential Bad \hspace{1cm} \text{Polynomial Good}

\[T(n) = C_1 + C_2T(n - C_3) \quad \text{if } C_2 > 1, \text{ trouble!} \]

Divide & Explode

\[T(n) = C_1 + C_2T(n / C_3) \quad \text{if } C_2 > 1 \text{ okay provided } C_3 > 1 \]

Divide & Conquer

Figure 4: Exponential vs. Polynomial.

Proof:
Let \(v \in V \) be any vertex. Consider path \(p = \langle v_0, v_1, \ldots, v_k \rangle \) from \(v_0 = s \) to \(v_k = v \) that is a shortest path with minimum number of edges. No negative weight cycles \(\implies p \) is simple \(\implies k \leq |V| - 1. \)

Consider Figure 4. Initially \(d[v_0] = 0 = \delta(s, v_0) \) and is unchanged since no negative cycles.

After 1 pass through \(E \), we have \(d[v_1] = \delta(s, v_1) \), because we will relax the edge \((v_0, v_1) \) in the pass, and we can’t find a shorter path than this shortest path. (Note that we are invoking optimal substructure and the safeness lemma from Lecture 16 here.)

After 2 passes through \(E \), we have \(d[v_2] = \delta(s, v_2) \), because in the second pass we will relax the edge \((v_1, v_2) \).

After \(i \) passes through \(E \), we have \(d[v_i] = \delta(s, v_i) \).

After \(k \leq |V| - 1 \) passes through \(E \), we have \(d[v_k] = d[v] = \delta(s, v) \). \(\square \)

Corollary
If a value \(d[v] \) fails to converge after \(|V| - 1 \) passes, there exists a negative-weight cycle reachable from \(s \).

Proof:
After \(|V| - 1 \) passes, if we find an edge that can be relaxed, it means that the current shortest path from \(s \) to some vertex is not simple and vertices are repeated. Since this cyclic path has less weight than any simple path the cycle has to be a negative-weight cycle. \(\square \)
Figure 5: The numbers in circles indicate the order in which the \(\delta \) values are computed. Error: Edge from \(D \) to \(E \) on left graph should be from \(E \) to \(D \) as in the right graph.

Longest Simple Path and Shortest Simple Path

Finding the longest simple path in a graph with non-negative edge weights is an NP-hard problem, for which no known polynomial-time algorithm exists. Suppose one simply negates each of the edge weights and runs Bellman-Ford to compute shortest paths. Bellman-Ford will not necessarily compute the longest paths in the original graph, since there might be a negative-weight cycle reachable from the source, and the algorithm will abort.

Similarly, if we have a graph with negative cycles, and we wish to find the longest *simple* path from the source \(s \) to a vertex \(v \), we cannot use Bellman-Ford. The shortest simple path problem is also NP-hard.
\[\delta(s, v_i) = \delta(s, v_{i-1}) + w(v_{i-1}, v_i) \]

Figure 6: Illustration for proof.