
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology October 19, 2010
Professors Konstantinos Daskalakis and Patrick Jaillet Handout 4

Problem Set 4
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due Tuesday, November 2nd at 11:59PM.
Part B questions are due Thursday, November 4th at 11:59PM.

Solutions should be turned in through the course website. Your solution to Part A should be in
PDF form using LATEX or scanned handwritten solutions. Your solution to Part B should be a valid
Python file, together with one PDF file containing your solutions to the two theoretical questions
in Part B.
Templates for writing up solutions in LATEX are available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, November 2nd
1. (15 points) Word Ladders

A common word game is to take two English words, w1 and w2, of the same length and try
to traverse a “word ladder” from w1 to w2 by changing one letter at a time. The challenge of
the game is to ensure that each time you change a letter, you still have a valid English word.
For example, a word ladder from HEAP to SORT is

HEAP, HEAT, PEAT, PERT, PORT, SORT

There may be many or no word ladders for some words.

For any word w, we assume that there are at most e English words within one letter of w and
that w can reach at most W other words. For two words w1 and w2, let Lw1,w2 be the number
of words in the shortest word ladder between w1 and w2.

(a) (10 points) Given two words of the same length, w1 and w2, give an algorithm for
finding a word ladder (it need not be the shortest word ladder) between w1 and w2 or
declaring that one does not exist. You may assume that you have access to a function
ISWORD that runs in constant time and takes any string and returns TRUE if that string
is a valid English word and FALSE otherwise. Do your runtime analysis in terms of e,
W , and Lw1,w2 .

(b) (5 points) Now assume you are given access to the function D that takes two words w1

and w2 and returns the length of the shortest word ladder from w1 to w2. Explain how



2 Handout 4: Problem Set 4

Figure 1: The connected clusters of a graph. The connected clusters are shown in gray. The cluster
graph consists of the connected clusters and the edges shown by the thick dashed lines.

to use D to speed up your algorithm. Assuming D(w1, w2) runs in constant time, what
is now the running time of the algorithm in terms of Lw1,w2 , e, and W ?

2. (15 points) Cycle Detection

A cycle is a path of edges from a node to itself.

(a) (7 points) You are given a directed graph G = (V, E), and a special vertex v. Give an
algorithm based on BFS that determines in O(V +E) time whether v is part of a cycle.

(b) (8 points) You are given a directed graph G = (V, E). Give an algorithm based on
DFS that determines in O(V + E) time whether there is a cycle in G.

3. (20 points) Clustering

Given directed graph G = (V, E), a connected cluster of the graph is a set of vertices
U ⊆ V such that each vertex u ∈ U can reach all other vertices in U . For example, a cycle
is a connected cluster.

The connected clusters of a graph G are a set of connected clusters {c1, c2, ..., cn} where
each vertex of the graph only belongs to one cluster and the clusters are maximally sized.
A cluster is maximally sized if there is no other set of vertices we could add to it and still
have a connected cluster. In other words, a cluster c is maximally sized if there exists no
two vertices v ∈ c and u 6∈ c such that v can reach u and u can reach v. An example of the
connected clusters of a directed graph is shown in Figure 1.

We consider that a vertex can reach itself trivially so that for a graph with no edges, the
connected clusters are just each vertex individually.

(a) (10 points) The transpose of a directed graph G = (V, E) is the graph GT = (V, ET )
where ET is the edge set E with the directions of each edge flipped. GT has the same
connected clusters as G. Specifically, if and only if a vertex v can reach a vertex u in
G and in GT , v and u are in the same connected cluster. Use this fact (you do not need
to prove it) to write an algorithm for finding the connected clusters of a directed graph



Handout 4: Problem Set 4 3

represented using adjacency lists in O(V + E) time. You should give a running time
analysis for your algorithm and a proof of correctness.

(b) (5 points) Once we have identified the connected clusters of the graph, we can create
another graph, the cluster graph, G = (V , E) from these clusters. The vertices of G are
the connected clusters of G so that each vertex of G is a set of the vertices of G. We
draw an edge from a cluster c1 ∈ V to a cluster c2 ∈ V if, in G, there is a directed edge
from a vertex v1 ∈ c1 to a vertex v2 ∈ c2. In other words, we draw a directed edge from
c1 to c2 if some vertex in c1 can reach some vertex in c2. An example of a cluster graph
is shown in Figure 1
Show how to modify your algorithm from Part 3a to output the cluster graph, G, rather
than just the connected clusters of G. You are already computing V so you just need to
show how to find E . This should not change the running time of your algorithm.

(c) (5 points) Argue that G is a DAG. (Hint: Argue by contradiction.)



4 Handout 4: Problem Set 4

266666666666664

‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’
‘W’ ‘W’ ‘O’ ‘O’ ‘O’ ‘O’ ‘O’ ‘O’ ‘O’ ‘W’
‘W’ ‘W’ ‘W’ ‘W’ ‘O’ ‘W’ ‘W’ ‘W’ ‘O’ ‘W’
‘W’ ‘W’ ‘O’ ‘O’ ‘O’ ‘W’ ‘O’ ‘W’ ‘O’ ‘W’
‘W’ ‘W’ ‘W’ ‘W’ ‘O’ ‘W’ ‘O’ ‘W’ ‘W’ ‘W’
‘W’ ‘W’ ‘B’ ‘O’ ‘O’ ‘O’ ‘O’ ‘O’ ‘O’ ‘W’
‘W’ ‘W’ ‘O’ ‘W’ ‘W’ ‘W’ ‘O’ ‘W’ ‘W’ ‘W’
‘W’ ‘W’ ‘O’ ‘W’ ‘O’ ‘O’ ‘E’ ‘O’ ‘O’ ‘W’
‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’
‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’ ‘W’

377777777777775
Figure 2: A 10x10 maze created using DFS. The starting square is blue and the ending square
green. Its solution is shown to the right in red. The purple shows the nodes that DFS expanded in
finding this solution. The matrix encoding of the maze is shown on the far right.

Part B: Due Thursday, November 4th
1. (50 points) Mazes

(a) (20 Points) You will first write an algorithm for creating a maze. We have written a
Maze class for you (in maze.py) that encodes a maze as a matrix in the following
manner:

• A ‘W’ indicates a square with a wall in it
• An ‘O’ indicates an open square
• A ‘B’ indicates the starting square
• An ‘E’ indicates the ending square

An example of a matrix encoding of a maze is shown in Figure 2. Any given square
is adjacent to the squares above, below, and to its left and right. The class also stores
the number of rows and columns in the matrix and the coordinates of the starting and
ending squares. The coordinates are stored as [row, column].
Your job is to fill in the CREATE MAZE method in the maze creator skeleton.py
file to create a maze using depth first search. In maze creation, we begin with a maze of
all walls (so a matrix of all ‘W’s). We do a depth-first search through the maze from a
provided ending square. At each square, we push all unseen adjacent squares onto the
stack. (Think about the best method for pushing adjacent squares onto the stack - what
happens, for example, if you always push the square below the current square onto the
stack last?) When a square is popped off the stack, we remove the wall in the square
and the wall between it and its parent square. Therefore, in the creation of the maze,
we think of each square as adjacent to squares 2 away from it so that there is a wall
to remove in between. You must keep track of which wall should be removed when a
square is popped off the stack.
Once the maze is created, you must choose a starting square. You can do this randomly
or find a better method, but you must ensure that the starting square can reach the
ending square. Both starting and ending square should be stored [row, column].
Feel free to add any helper functions or classes you may require.



Handout 4: Problem Set 4 5

Figure 3: A maze created using DFS and its solution.

At this point, your code will not pass any of the provided unit tests. However, you
should look at your output mazes and make sure that they look reasonable. You can
test your maze creator by running:
python maze creator skeleton.py rows columns out-file [scale]

This will create a maze of size rows by columns using your creation routine and write
it to the output-file, which should end in .ppm or .txt. If it ends in .ppm, your maze will
be output as a PPM image. Otherwise, the ASCII representation of your maze will be
written to a text file. If you are creating a small maze and writing it out as an image,
you can scale the image so that each maze square takes up multiple pixels using the
scale factor. For small images, a scale factor of 300/rows is about right. See the code
for more details.
An example of a 50x50 maze created using depth first search is shown in Figure 3. You
should not find it trivial to solve the mazes output by your algorithm.
We have provided code for you (in mazeIO.py) that can read and write mazes from
an ASCII file or from a ppm image file using the methods in the ppmIO and asciiIO
classes. We highly recommend that you write your mazes out to a ppm file so you can
look at them. GIMP, Image Viewer, XV, and FSpot can all open PPM files. You can also
use the freely available convert program to convert .ppm to .png or some other more
common image format. You will need to do this in order to include images of your
created mazes in your writeup. However, if you cannot find any way of reading and
converting ppm images, the ASCII output will give you at least some visual interpre-
tation of your maze. Calling maze creator skeleton.py from the command
line with a .txt output file will automatically output an ASCII version of the maze rather
than a ppm image.

(b) (20 points) Now you will write an algorithm to solve the mazes you have created. A
solution to the maze consists of a list of adjacent open squares leading from the starting
square to the ending square. A grid square is adjacent to the squares above, below, and
to the left and right of it.



6 Handout 4: Problem Set 4

You should finish implementing the SOLVE MAZE method in maze solver skeleton.py.
The SOLVE MAZE function takes one parameter setting whether it should solve the
maze using depth first (“DFS”) or breadth first search (“BFS”). You should implement
both. The function should return the path found and the nodes expanded during the
search. Both the path and the visited node should be lists of [row, column] coordinates
indicating squares in the maze. The path should begin with the starting square of the
maze and terminate with the ending square of the maze.
Feel free to add any helper functions or classes you may require.
Once you have finished implementing the solver, your code should pass all unit tests
(the third test may take a few seconds to run; that’s OK). In addition you can look at
the output of your code using
python maze solver skeleton.py in-file out-file search-type [scale]

Here input-file should be a ppm image or ASCII file of the type output by MazeCreator
with the correct .ppm or .txt extension. The search-type should be either DFS or BFS.
You can write your own ASCII files to test your maze if you do not yet have your maze
creator working. An example ASCII file is in many paths.txt.
The solver will write your solution to the output file. If the output file has a .ppm
extension, it will output a ppm image of the type in Figures 2 and 3 with the path
shown in red and other visited nodes shown in purple. For more details, see the code.

(c) (10 points) Is DFS guaranteed to find the shortest path through the maze? Is BFS?
On what types of mazes (if any) will DFS expand fewer nodes than BFS? Defend
your explanations with examples from your implementation as well as a theoretical
argument.


