
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology October 5th, 2010
Professors Konstantinos Daskalakis and Patrick Jaillet Handout 3

Problem Set 3
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due Tuesday, October 19th at 11:59PM.
Part B questions are due Thursday, October 21st at 11:59PM.

Solutions should be turned in through the course website. Your solution to Part A should be in
PDF form using LATEX or scanned handwritten solutions. Your solution to Part B should be a valid
Python file, together with one PDF file containing your solutions to the two theoretical questions
in Part B.
Templates for writing up solutions in LATEX are available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, October 19th

1. (20 points) Finding the Largest i Elements in Sorted Order

Given an array of n numbers, we want to find the i largest elements in sorted order. That is,
we want to produce a list containing, in order, the largest element of the array, followed by
the 2nd largest, etc., until the ith largest. Assume that i is fixed beforehand, and all inputs
have n > i.

(a) (5 points) One idea is to mergesort the input array in descending order, and then list
the first i elements of the array. Analyze the running time of this algorithm in terms of
n and i.

Solution: From the lecture we know that mergesort runs in O(n log n) time. Once
the sorted array is obtained, looking at it first i elements takes O(i) time. The resulting
total running time is O(i+n log n), which is O(n log n) by our assumption that i < n.

(b) (10 points) Describe an algorithm that achieves a faster asymptotic time bound than
the one in Part (a). Analyze the running time of this algorithm in terms of n and i.

Solution: We create first a max-heap out of the input array – from the lecture we know
that this can be done in O(n) time. Next, we extract the maximum element of this heap
i times (each extraction can be done in O(log n) time, for a total of O(i log n) running
time), and output the list of the i elements extracted in this way.

2 Handout 3: Problem Set 3

By definition of the max-heap, this algorithm is correct. Its total running time is O(n+
i log n). Note that, for all i < n, this running time is asymptotically smaller than the
above O(n log n) running time.
Observation: By employing the trick from the solution to problem 7 form Quiz 1, one
can obtain an O(n+ i log i) running time procedure. However, O(n+ i log i) is asymp-
totically the same as O(n + i log n), so this improvement does not offer asymptotic
speed-up. (Still, congratulations to a few of you that noticed this improvement!)

(c) (5 points) Now suppose that the elements of the array are drawn, without replacement,
from the set {1, 2, ..., 2n}. Give an algorithm that solves the problem, with this addi-
tional information, and analyze its running time in terms of n and i.

Solution: We employ counting sort (as seen in the lecture) to sort in descending order
the elements in O(n + k) = O(n) time, where by our assumption k is equal to 2n.
Once we get the array sorted we just output first i elements. The total running time is
O(n + i) = O(n) time.

For parts (b) and (c), full credit will be awarded only for an asymptotically optimal solution,
with partial credit given for solutions with slower asymptotic running times.

2. (15 points) Dynamic Medians

Marianne Midling needs a data structure “DM” for maintaining a set S of numbers, support-
ing the following operations:

• CREATE(): Create an empty set S

• INSERT(x): Add a new given number x to S

• MEDIAN(): Return a median of S. (Note that if S has even size, there are two medians;
either may be returned. A median of a set of n distinct elements is larger than or equal
to exactly b(n + 1)/2c or d(n + 1)/2e elements.)

(Assume no duplicates are added to S.)

Marianne proposes to implement this “dynamic median” data structure DM using a max-
heap A and a min-heap B, such that the following two properties always hold:

1. Every element in A is less than every element in B, and

2. the size of A equals the size of B, or is one less.

To return a median of S, she proposes to return the minimum element of B.

(a) (5 points) Argue that this is correct (i.e., that a median is returned).

Solution: Let n be the size of S.
By property 1, we know that the minimum element e of B is larger than all the elements
in A. Furthermore, by its minimality, e is smaller than all the other elements in B. By

Handout 3: Problem Set 3 3

property 2, we know that A has to have exactly d(n + 1)/2e − 1 elements. So, e is
larger or equal to exactly d(n + 1)/2e elements. Thus, e is indeed the median of the set
and Marianne’s algorithm is correct.

(b) (10 points) Explain how to implement INSERT(x), while maintaining the relevant prop-
erties. Analyze the running time of your INSERT algorithm in terms of n, the number
of elements in S.

Solution: Note that since initially property 2 holds, |A| = d(n + 1)/2e − 1, and
|B| = b(n + 1)/2c, where n is the size of S.
Let x be the element to be inserted. We start by comparing x to the minimum element b
of B (we can do it in O(1) time since B is a min-heap). If x > b we do a heap-insertion
of x into B, otherwise, we do a heap-insertion of x into A. (Either of these steps will
take O(log n) time.) This way of inserting x ensures that the property 1 still holds.
However, after this insertion, property 2 might be violated by either |A| becoming equal
to |B|+ 1, or |B| becoming equal to |A|+ 2. In the first case we extract the maximum
element of A and heap-insert it into B (since A is a max-heap and B is a heap, this
can be done in O(log n) time). Similarly, in the second case we extract the minimum
element of B and heap-insert it into A (once again, we can do it in O(log n) time).
After this operation, property 2 holds again, and we did not violate property 1 while
doing it.

3. (15 points) The Optimality of the Binary Search Tree Construction

Consider a list of n numbers and a task of building a binary search tree that contains them.
In Problem 2.1 (from Problem set 2) we outlined an algorithm that performs this task by
starting with an empty tree and inserting to it the elements of the list one by one. As we
mentioned, by employing appropriate rebalancing procedures, e.g. as in AVL-trees, the total
running time of this procedure is O(n log n).

Prove that in the comparison-based model of computation this running time is asymptotically
optimal. Namely, show that there is no algorithm in the comparison-based model that given
a list of n numbers constructs a binary search trees containing them in o(n log n) time.

Hint: As a first step, show that given a binary search tree one can output a sorted list of all
the numbers it contains in O(n) time.

Solution: First, recall from recitations (or CLRS) that given a binary search tree, we can
use an in-order traversal of this tree to obtain a sorted list of all its elements in O(n) time.

Now, assume for the sake of contradiction that there exists a comparison-based procedure
that given a list of n elements can produce a binary search tree representing this list and that
this procedure runs in o(n log n) time. By composing this procedure with in-order traversal
of the resulting tree, we can output all the elements of the input list in sorted order in time
O(n) + o(n log n) which is o(n log n).

4 Handout 3: Problem Set 3

Since in-order traversal does not require accessing the values of the elements that are kept in
the tree, we would obtain in this way a comparison-based procedure for sorting an arbitrary
list of n elements in o(n log n) time. However, this would contradict the fact proved in the
lecture that any such procedure has to have Ω(n log n) running time. Thus, we obtained a
contradiction that yields our desired claim.

