
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology September 13, 2010
Professors Konstantinos Daskalakis and Patrick Jaillet Problem Set 1

Problem Set 1
This problem set is divided into two parts: Part A problems are theory questions, and Part B
problems are programming tasks.

Part A questions are due Tuesday, September 21st at 11:59PM.
Part B questions are due Thursday, September 23rd at 11:59PM.

Solutions should be turned in through the course website. Your solution to Part A should be in
PDF form using LATEX or scanned handwritten solutions. Your solution to Part B should be a valid
Python file which runs from the command line.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, September 21st
1. (18 points) Asymptotic Growth

For each group of four functions below, rank the functions by increasing order of growth;
that is, find an arrangement g1, g2, g3, g4 of the functions satisfying g1 = O(g2), g2 = O(g3),
g3 = O(g4). (For example, the correct ordering of n, n2, n3, n4 is n, n2, n3, n4.)

(a) (6 points) Group 1:

f1(n) = n2n f2(n) = 2n/2 f3(n) = n! f4(n) = (n/e)n

(b) (6 points) Group 2:

f1 = (log n)1000 f2 = n1/2 f3 = 1/n f4 = n6.006

(c) (6 points) Group 3:

f1(n) = n100 f2(n) = n log n f3(n) =
1

n

(
n

100

)
f4(n) = log(log(n))

2. (12 points) Binary Search

Binary search is a fast algorithm used for finding membership of an element in a sorted list.
The recursive version of the algorithm is given below. The function takes a sorted list of
numbers, alist, and a query, item, and returns true if and only if item ∈ alist. Let n
denote the length of the list alist.



2 Problem Set 1

def binarySearch(alist, item):
if len(alist) == 0:

return False
else:

midpoint = len(alist)/2
if alist[midpoint]==item:

return True
else:

if item<alist[midpoint]:
return binarySearch(alist[:midpoint],item)

else:
return binarySearch(alist[midpoint+1:],item)

(a) (5 points) What is the runtime of the recursive version in terms of n, and why?

(b) (7 points) Write a concise proof of correctness for the algorithm. (Note: you may wish
to use a loop invariant for your proof. See section 2.1 of CLRS for an example.)

3. (20 points) Uncoordinated Peak Finding

Recall the 2-dimensional Peak finding problem discussed in lecture. Consider the following
algorithm for solving the problem, given a 2-dimensional integer matrix B of size nxn:

1 Let n = len(row(B)). Find the maximum element of the (n/2)th column and call it
cmax = B[i][n/2]

2 If cmax ≥ B[i][n/2− 1] and cmax ≥ B[i][n/2 + 1] return cmax

3 If cmax < B[i][n/2−1] then B = B[0..(n-1)][0..n/2-1] else B=B[0..(n-1)][n/2+1..(n-1)]

4 Find the maximum element of the (n/2)th row of B and call it rmax = B[n/2][j]

5 If rmax ≥ B[n/2− 1][j] and rmax ≥ B[n/2 + 1][j] return rmax

6 If rmax < B[n/2− 1][j] then B = B[0..n/2-1][0..n/2-1] else B=B[n/2+1..(n-1)][0..n/2-
1]

7 goto Step 1.

(a) (10 points) Give a counterexample (an instance of B of size no larger than 7×7) where
the above algorithm fails to find a peak in B even though it exists. (If your example
is smaller than 7 × 7 and does not have a well-defined middle row or middle column,
state which rows/columns you use as the middle rows/columns.)

(b) (10 points) We can fix the above algorithm by keeping track of the running maximum
runmax as below. Explain how it solves the problem in the previous counterexample.

1 runmax = −∞
2 Let n = len(row(B)). Find the maximum element of the (n/2)th column and call it

cmax = B[i][n/2]



Problem Set 1 3

3 If cmax ≥ runmax then
4 If cmax ≥ B[i][n/2− 1] and cmax ≥ B[i][n/2 + 1] then return cmax

5 If cmax < B[i][n/2−1] then runmax = B[i][n/2−1] else runmax = B[i][n/2+
1]

6 If cmax < B[i][n/2−1] then B=B[0..(n-1)][0..n/2-1] else B=B[0..(n-1)][n/2+1..(n-
1)]

7 Else /* Update B to be the partition of B containing runmax */
8 If runmax ∈ B[0..(n-1)][0..n/2-1] then B=B[0..(n-1)][0..n/2-1] else B=B[0..(n-

1)][n/2+1..(n-1)]
9 Find the maximum element of the (n/2)th row of B and call it rmax = B[n/2][j]

10 If rmax ≥ runmax then
11 If rmax ≥ B[n/2− 1][j] and rmax ≥ B[n/2 + 1][j] return rmax

12 If rmax < B[n/2−1][j] then runmax = B[n/2−1][j] else runmax = B[n/2+
1][j]

13 If rmax < B[n/2 − 1][j] then B = B[0..n/2-1][0..n/2] else B=B[n/2+1..(n-
1)][0..n/2]

14 Else /* Update B to be the partition of B containing runmax */
15 If runmax ∈ B[0..n/2 − 1][0..n/2 − 1] then B = B[0..n/2 − 1][0..n/2 − 1]

else B = B[n/2 + 1..(n− 1)][0..n/2− 1]

16 goto Step 2.

Part B: Due Thursday, September 23rd
1. (50 points) Peak Finding

Consider an array A containing n integers. We define a peak of A to be an x such that
x = A[i], for some 0 ≤ i < n, with A[i − 1] ≤ A[i] and A[i] ≥ A[i + 1]. In other words,
a peak x is greater than or equal to its neighbors in A (for boundary elements, there is only
one neighbor). Note that A might have multiple peaks.

As an example, suppose A = [10, 6, 4, 3, 12, 19, 18]. Then A has two peaks: 10 and 19.

Note that the absolute maximum of A is always a peak, but it requires Ω(n) time to compute.

• (20 points) Write quick find 1d peak to compute any peak of array A in O(log(n))
time using the algorithm described in the lecture.

Now consider a three dimensional matrix B of integers of size n × n × n. We define the
neighborhood of an element x = B[i][j][k] as B[i + 1][j][k], B[i − 1][j][k], B[i][j + 1][k],
B[i][j− 1][k], B[i][j][k + 1] and B[i][j][k− 1]. For elements on a face we consider only five
neigbors, for elements on an edge we consider only four neighbors, and for elements on the
eight corners, only three neighbors are considered. x is defined to be a peak of B if and only



4 Problem Set 1

if it is greater than or equal to all of its neighbours. Note that the maximum element of B is
a possible solution for x but finding it requires Ω(n3) time.

For python coding help, the O(n log(n)) algorithm described in the lecture is provided as
medium find 2d peak.

• (10 points) Describe an algorithm to find a peak of a three dimensional matrix B in
O(n2) time, and explain why the running time of your algorithm is O(n2).

• (20 points) Write quick find 3d peak to compute any peak of array B in O(n2)
time using your algorithm.


