
6.006- Introduction to
Algorithms

Lecture 6
Prof. Constantinos Daskalakis

CLRS: Chapter 17 and 32.2.

LAST TIME…

Dictionaries, Hash Tables

• Dictionary: Insert, Delete, Find a key

– can associate a whole item with each key

• Hash table

– implements a dictionary, by spreading items over an array

– uses hash function

h: Universe of keys (huge) Buckets (small)

– Collisions: Multiple items may fall in same bucket

– Chaining Solution: Place colliding items in linked list,
then scan to search

• Simple Uniform Hashing Assumption (SUHA):

h is “random”, uniform on buckets

– Hashing n items into m buckets  expected “load” per bucket: n/m

– If chaining used, expected search time O(1 + n/m)

: universe of all possible keys-huge set

h(k1)

h(k3)

h(k2) = h(k4)

: actual keys-small set, but not known when

designing data structure

K

item3

item1

item2 item4

K

Hash Table with Chaining

Hash Functions?

• Division hash

– h(k) = k mod m

– Fast if m is a power of 2, slow otherwise

– Bad if e.g. keys are regular

• Multiplication hash

– a an odd integer

– h(k) = (a·k mod 2w) >> w-r

– Better on regular sets of keys

k (key)

w bits

keep

this

r bits

a (multiplier)x

Non-numbers?

• What if we want to hash e.g. strings?

• Any data is bits, and bits are a number

• E.g., strings:

– Letters a..z can be “digits” base 26.

– “the” = t·(26)2 + h·(26) + e

= 19·(676) + 8·(26) + 5

= 334157

• Note: hash time is length of string, not O(1)

(wait a few slides)

Longest Common Substring

• Strings S,T of length n, want to find longest
common substring

• Algorithms from last time:
O(n4) O(n3logn) O(n2logn)

• Winner algorithm used a hash table of size n:

Binary search on maximum match length L; to
check if a length works:

– Insert all length-L substrings of S in hash table

– For each length-L substring x of T

• Look in bucket h(x) to see if x is in S

Runtime Analysis

• Binary search cost: O(log n) length values L tested

• For each length value L, here are the costly operations:

– Inserting all L-length substrings of S: n-L hashes

• Each hash takes L time, so total work ((n-L)L)= (n2)

– Hashing all L-length substrings of T: n-L hashes

• another (n2)

– Time for comparing substrings of T to substrings of S:

• How many comparisons?

• Under SUHA, each substring of T is compared to an expected O(1) of
substrings of S found in its bucket

• Each comparison takes O(L)

• Hence, time for all comparisons: (nL)= (n2)

• So (n2) work for each length

• Hence (n2 log n) including binary search

Faster?

• Amdahl’s law: if one part of the code takes

20% of the time, then no matter how much you

improve it, you only get 20% speedup

• Corollary: must improve all asymptotically

worst parts to change asymptotic runtime

• In our case

– Must compute sequence of n hashes faster

– Must reduce cost of comparing in bucket

FASTER COMPARISON

Faster Comparison

• First Idea: when we find a match for some length, we
can stop and go to the next value of length in our binary
search.

• But, the real problem is “false positives”

– Strings in same bucket that don’t match, but we waste time on

• Analysis:

– n substrings to size-n table: average load 1

– SUHA: for every substring x of T, there is 1 other string in x’s
bucket (in expectation)

– Comparison work: L per string (in expectation)

– So total work for all strings of T: nL = (n2)

Solution: Bigger table!

• What size?

• Table size m = n2

– n substrings to size-m table: average load 1/n

– SUHA: for every substring x of T, there is 1/n other
strings in x’s bucket (in expectation)

– Comparison work: L/n per string (in expectation)

– So total work for all strings of T: n(L/n) = L = O(n)

• Downside?

– Bigger table

– (n2 isn’t realistic for large n)

Signatures

• Note n2 table isn’t needed for fast lookup

– Size n enough for that

– n is to reduce cost of false positive compares

• So don’t bother making the n2 table

– Just compute for each string another hash value in
the larger range 1..n2

– Called a signature

– If two signatures differ, strings differ

– Pr[same sig for two different strings] = 1/n2

• (simple uniform hashing)

Application

• Hash substrings to size n table

• But store a signature with each substring

– Using a second hash function to [1..n2]

• Check each T-string against its bucket

– First check signature, if match then compare strings

– Signature is a small number, so comparing them is O(1)

strictly speaking O(logn); but if n2<232 the
signature fits inside a word of the computer;
in this case, the comparison takes O(1)

Application
• Runtime Analysis:

– for each T-string:

O(bucket size)=O(1) work to compare signatures;

– so overall O(n) time in signature comparisons

– Time spent in string comparisons?

L x (Expected Total Number of False-Signature Collisions)
- n out of the n2 values in [1..n2] are used by S-strings

- so probability of a T-string signature-colliding with

some S-string: n/n2

- hence total expected number of collisions 1

so total time spent in String Comparisons is L

fine print: we didn’t take into account the time needed to compute
signatures; we can compute all signatures in O(n) time using trick
described next…

FASTER HASHING

Rolling Hash

• We make a sequence of n substring hashes

– Substring lengths L

– Total time O(nL) = O(n2)

• Can we do better?

– For our particular application, yes!

Verba volant, scripta
manent

length n

length L

Rolling Hash Idea

• e.g. hash all 3-substrings of “there”

• Recall division hash: x mod m

• Recall string to number:

– First substring “the” = t·(26)2 + h·(26) + e

• If we have “the”, can we compute “her”?

• i.e. subtract first letter’s contribution to number, shift, and

add last letter

“her” = h·(26)2+ e·(26) + r

= 26 · (h·(26) + e) + r

= 26 · (t·(26)2 + h·(26) + e - t·(26)2) + r

= 26 · (“the” - t·(26)2) + r

General rule

• Strings = base-b numbers

• Current substring S[i … i+L-1]

S[i] · bL-1 + S[i+1] · bL-2 + S[i+2] · bL-3… + S[i+L-1]

S[i] · bL-1

S[i+1] · bL-2 + S[i+2] · bL-3… + S[i+L-1]

b

S[i+1] · bL-1 + S[i+2] · bL-2… + S[i+L-1] · b

+ S[i+L]

S[i+1] · bL-1 + S[i+2] · bL-2… + S[i+L-1] · b + S[i+L]

=S[i+1 … i+L]

Mod Magic 1

• So: S[i+1 … i+L] = b S[i … i+L-1] bL S[i] S[i+L]

• where

S[i … i+L-1] = S[i] · bL-1 + S[i+1] · bL-2 + … + S[i+L-1] (*)

• But S[i … i+L-1] may be a huge number (so huge that we may

not even be able to store in the computer, e.g. L=50, b=26)

• Solution only keep its division hash: S[…] mod m

• This can be computed without computing S[…], using mod
magic!

• Recall: (ab) mod m = (a mod m) (b mod m) (mod m)
(a+b) mod m = (a mod m) + (b mod m) (mod m)

• With a clever parenthesization of (*): O(L) to hash string!

Mod Magic 2

• Recall: S[i+1 … i+L] = b S[i … i+L-1] bL S[i] S[i+L]

• Say we have hash of S[i … i+L-1], can we still compute

hash of S[i+1 … i+L] ?

• Still mod magic to the rescue!

• Job done in O(1) operations, if we know bL mod m

Computing n-L hashes costs O(n)

O(L) time for the first hash

+O(L) to compute bL mod m

+ O(1) for each additional hash

Summary

• Reduced compare cost to O(n)/length

– By using a big hash table

– Or signatures in a small table

• Reduced hash computation to O(n)/length

– Rolling hash function

• Total cost of phases: O(n log n)

• Not the end: suffix tree achieves O(n)

