6.006- Introduction to
Algorithms
v ————

Lecture 5
Prof. Constantinos Daskalakis

Today’s Topic

“Optimist pays off!”

a.k.a. The ubiquity and usefulness
of dictionaries

Dictionaries
It 15 a set containing items; each item has a key

what keys and 1items are 1s quite flexible

Supported Operations:

— Insert(item): add given item to set

— Delete(item): delete given item to set

— Search(key): return the item corresponding to the
given key, 1 such an item exists

Assumption: every item has 1ts own key (or that
inserting new item clobbers old
Application (and origin of name): Dictionaries

— Key 1s word 1n

Hnglish, iterm 1s word 1in French

Dictionaries are everywhere

* Spelling correction

— Key 1s misspell

ed word, ifem 1s correct spelling

* Python Interpreter

— Executing program, see a variable name (key)

— Need to look up its current assignment (item)

e Web server

— Thousands of network connections open

— When a packet

arrives, must give to right process

— Key 15 source L

P address of packet, ifem 1s handler

Implementation

 use BSTs!

* can keep keys 1n a BST, keeping a pointer from
cach key to 1ts value

* O(log n) time per operation
* Often not fast enough for these applications!

e Can we beat BSTs?

if only we could do all operations in O(1) ...

|A parenthesis: DNA Matching

Application: DNA matching

Given two DNA sequences
— Strings over 4-letter alphabet

Find largest substring that appears 1n both
— Algorithm vs. Arithmetic
— Algorithm vs. Arithmetic

Also useful 1 plagiarism detection

Say strings S and T of length n

Naive Algorithm

For L = n downto 1
for all length L substrings X1 of S
for all length L substrings X2 of T
if X1=X2, return L

Runtime analysis

— n candidate lengths

— n strings of that length 1n each of X1, X2
— L. time to compare the strings

— Total runtime: Q(n*)

Improvement 1: binary search

Start with L=n/2
for all length L substrings X1 of S
for all length L substrings X2 of T

if X1=X2, success, try larger L
if failed, try smaller L

Runtime analysis
QMm% =2 Q1n° log n)

Improvement 2: Dictionary

For every possible length L=n,....1
— Insert all length L substrings of S into a dictionary
— For each length L substring of T, check 1t 1t exists in dictionary

Possible lengths for outer loop: n
For each length:

— at most n substrings of S mnserted into dictionary, each insertion takes
time O(1) * L (L 1s paid because we have to read string to insert it)

— at most n substrings of T checked for existence inside dictionary,
each check takes time O(1) * L

— Overall time spent to deal with a particular length L 15 O(Ln)
Hence overall O(n?)
With binary search on length, total is O(n? log n)
“Rolling hash” dictionaries improve to O(n log n) (next time)

...end of parenthesis]

Dictionaries: Attempt #1

O P
1 P
2 - * Forget about BSTs..
P .
keyl — * Use table, indexed by keys!
-
>
key2 item?2
A
key3 item3
~

Problems...

* What if keys aren’t numbers?

How can I then index a table?

L . o I r L. .-..ll.ll &
= o | g
e T R T e T T TR

1=

£
P
o

Problems...

* What if keys aren’t numbers?

How can I then index a table?

Pythagoras

Problems...

* What if keys aren’t numbers?

e

of bits

— So we can pretend 1t’s a number

< “Everything is number.”

— Anvthing in the computer is a sequence

* Example:

— 26 letters 1n alphabet
—> can represent each with 5 bits

— Antidisestablishmentarianism has 28 'f"' S — %
— 28%*5 =140 bits Pythagoras

— So, store

~nglish words

in array of size 24Voops

* Isn’t this too much space for 100,000 words?

Hash Functions

* Exploit sparsity
— Huge universe U of possible keys
— But only n keys actually present
— Want to store 1n table (array) of size m~n

* Define hash function h:U-2>{1..m}
— Filter key k through h() to find table position
— Table entries are called buckets

* Time to msert/find key 1s
— Time to compute h (generally length of key)
— Plus one time step to look 1n array

A :universe of all possible keys;

huge set
K :actual keys; small set but not

known in advance

— (1). mseﬁ lt_t-:-mlz, —
@ ® e W 1
. o ¢ o -(...).
® o0 %0 o 111) msert ite item3
® o e ki \.
le/{ii .'.ii' ey k3
@]
\ e o%0 : .. k2 k3
* of ®e %, k4
® o -
= "_ B (1) nsert item?2],
with key
item?2

A : universe of all possible keys

(1v) suppose we now try to inset

item4, with key k4 and h(k4)=h(k2)...

h{k1)

h(k3)

h{k2)

m-1

(1v) suppose we now try to inset

item4, with key k4 and h(k4)=h(k2)...

(1) nsert item1,

item1

h{k1)

h(k3)

h{k2) = h(k4)
(collision)

m-1

Collisions

* What went/can go wrong?
— Dastinet keys x and y
— But h(x) = h(y)
— Called a collision
* This 1s unavoidable: 1f table smaller than
range, some keys must collide. ..

— Pigeonhole principle

* What do you put in the bucket?

Coping with collisions

* Ideal: Change to a new “uncolliding” hash
function

— Hard to find, and takes time
* Idea2: Chaining

— Put both 1tems 1n same bucket (this lecture)

* Idea3: Open addressing
— Find a different, empty bucket for y (next lecture)

Chaining
- Each bucket, linked

list of contained items

h{k1)

teml | - Space used 1s

space of table
items (size of key and item)
* i =hia) T

item?2 item4

U : universe of all possible keys

K :actual keys, not known in advance

Problem Solved?

* To find key, must scan whole list in key’s bucket
* Length L list costs L key comparisons
* If all keys hash to same bucket, lookup cost ®(n)

Solution: Optimism

* Assume keys are equally likely to land i
cvery bucket, independently of where other
keys land

e (Call this
the “Simple Uniform Hashing” assumption

— (why/when can we make this assumption?)

Average Case Analysis under SUHA

* nitems 1n table of m buckets
* Average number of items/bucket 1s o-=n/m

* So expected time to find some key x 15 1+
* O(1) if x=0(1), 1.e. m=C(n)

Problem: Reality

Keys are often very nonrandom
— Regularity (evenly spaced sequence of keys)

— All sorts of mysterious patterns

Solution: pick a hash function whose values
“look” random

Similar to pseudorandom generators

Whatever function, always some set of keys
that 1s bad

— but hopetfully not your set

Division Hash Function

e h(k) = k mod m

* k, and k, collide when k,=k, (mod m)
— Unlikely 1f keys are random

* ¢.g. 1f m1s a power of 2, just take low order
bits of key
— Very fast (a mask)

— And people care about very fast in hashing

Problems

* Regularity

— Suppose keys are x.2x.3x.4x.....

— Suppose x and chosen m have common divisor d

— Then (m/d)x 1s a mulfiple of m
* 50 1'X = (1tm/d)x mod m
— Only use 1/d fraction of table
* E.g. m power of 2 and all keys are even

* So make m a prime number
— But finding a prime number 1s hard

— And now you have to divide (slow)

Multiplication Hash Function

Suppose we’re aiming for table size 27
and keys are w bits long, where w>r 1s the machine word
Multiply k with some a (fixed for the hash function)

then keep certain bits of the result as follows

Multiplication Hash Function

The formula:
h(k)

Bit shift

/

= [(a * k) mod 2"] >> (w - r)

— Multiply by a

— When overtflow machine word, wrap

— Take high »

v1ts of resulting machine word

— (Assumes tal

vle s1ize smaller than machine word)

Benefit: Multiplying and bit shifts faster than division

Good practice: Make a an odd integer (why?) > 2%-1

Python Implementation

Python objects have a hash method

— Number, string, tuple, any object implementing hash
Maps object to (arbitarily large) integer

— So really, should be called prehash

Take mod m to put 1in a size-m hash table

Peculiar details

— Integers map to themselves
— Strings that di

— “better” than random for common sequences

'

er by one letter don’t collide

* 1,2,3450rvar a, var b, var ¢, var d

Conclusion

Dictionaries are pervasive
Hash tables implement them efficiently

— Under an optimistic assumption of random keys

— Can be “made true” by choice of hash function

How did we beat BSTs?
— Used indexing

— Sacrificed operations: previous, successor

Next time: open addressing

