6.006-Introduction to Algorithms

Lecture 5

Prof. Constantinos Daskalakis

Today's Topic

"Optimist pays off!"

a.k.a. The ubiquity and usefulness of *dictionaries*

Dictionaries

- It is a set containing items; each item has a key
- what keys and items are is quite flexible
- Supported Operations:
 - Insert(item): add given item to set
 - Delete(item): delete given item to set
 - Search(key): return the item corresponding to the given key, if such an item exists
- Assumption: every item has its own key (or that inserting new item clobbers old
- Application (and origin of name): Dictionaries
 - Key is word in English, item is word in French

Dictionaries are everywhere

- Spelling correction
 - Key is misspelled word, item is correct spelling
- Python Interpreter
 - Executing program, see a variable name (key)
 - Need to look up its current assignment (item)
- Web server
 - Thousands of network connections open
 - When a packet arrives, must give to right process
 - Key is source IP address of packet, item is handler

Implementation

- use BSTs!
 - can keep keys in a BST, keeping a pointer from each key to its value
 - O(log n) time per operation
- Often not fast enough for these applications!
- Can we beat BSTs?

if only we could do all operations in O(1)...

[A parenthesis: DNA Matching

Application: DNA matching

- Given two DNA sequences
 - Strings over 4-letter alphabet
- Find largest substring that appears in both
 - Algorithm vs. Arithmetic
 - Algorithm vs. Arithmetic
- Also useful in plagiarism detection

Say strings S and T of length n

Naïve Algorithm

- For L = n downto 1
- for all length L substrings X1 of S
- for all length L substrings X2 of T
- if X1=X2, return L

- Runtime analysis
 - n candidate lengths
 - n strings of that length in each of X1, X2
 - L time to compare the strings
 - Total runtime: $\Omega(n^4)$

Improvement 1: binary search

- Start with L=n/2
- for all length L substrings X1 of S
- for all length L substrings X2 of T
- if X1=X2, success, try larger L if failed, try smaller L

• Runtime analysis $\Omega(n^4) \rightarrow \Omega(n^3 \log n)$

Improvement 2: Dictionary

- For every possible length L=n,...,1
 - Insert all length L substrings of S into a dictionary
 - For each length L substring of T, check if it exists in dictionary
- Possible lengths for outer loop: n
- For each length:
 - at most n substrings of S inserted into dictionary, each insertion takes time O(1) * L (L is paid because we have to read string to insert it)
 - at most n substrings of T checked for existence inside dictionary, each check takes time O(1) * L
 - Overall time spent to deal with a particular length L is O(Ln)
- Hence overall $O(n^3)$
- With binary search on length, total is $O(n^2 \log n)$
- "Rolling hash" dictionaries improve to O(n log n) (next time)

...end of parenthesis]

Dictionaries: Attempt #1

- Forget about BSTs..
- Use table, indexed by keys!

Problems...

• What if keys aren't numbers?

How can I then index a table?

Problems...

What if keys aren't numbers?

How can I then index a table?

Pythagoras

Problems...

What if keys aren't numbers?

"Everything is number."

- Anything in the computer is a sequence of bits
- So we can pretend it's a number
- Example: English words
 - 26 letters in alphabet
 - \Rightarrow can represent each with 5 bits
 - Antidisestablishmentarianism has 28 letters
 - -28*5 = 140 bits
 - So, store in array of size 2¹⁴⁰oops
- Isn't this too much space for 100,000 words?

Pythagoras

Hash Functions

- Exploit sparsity
 - Huge universe U of possible keys
 - But only n keys actually present
 - Want to store in table (array) of size m~n
- Define hash function h:U→{1..m}
 - Filter key k through h() to find table position
 - Table entries are called buckets
- Time to insert/find key is
 - Time to compute h (generally length of key)
 - Plus one time step to look in array

U: universe of all possible keys;

huge set

K: actual keys; small set but not known in advance

Collisions

- What went/can go wrong?
 - Distinct keys x and y
 - $-\operatorname{But} h(x) = h(y)$
 - Called a collision
- This is unavoidable: if table smaller than range, some keys must collide...
 - Pigeonhole principle
- What do you put in the bucket?

Coping with collisions

- Idea1: Change to a new "uncolliding" hash function
 - Hard to find, and takes time
- Idea2: Chaining
 - Put both items in same bucket (this lecture)
- Idea3: Open addressing
 - Find a different, empty bucket for y (next lecture)

Chaining

 \mathcal{U} : universe of all possible keys

K: actual keys, not known in advance

Problem Solved?

- To find key, must scan whole list in key's bucket
- Length L list costs L key comparisons
- If all keys hash to same bucket, lookup cost $\Theta(n)$

Solution: Optimism

- Assume keys are equally likely to land in every bucket, independently of where other keys land
- Call this the "Simple Uniform Hashing" assumption
 - (why/when can we make this assumption?)

Average Case Analysis under SUHA

- n items in table of m buckets
- Average number of items/bucket is $\alpha=n/m$
- So expected time to find some key x is $1+\alpha$
- O(1) if $\alpha = O(1)$, i.e. $m = \Omega(n)$

Problem: Reality

- Keys are often very nonrandom
 - Regularity (evenly spaced sequence of keys)
 - All sorts of mysterious patterns
- Solution: pick a hash function whose values "look" random
- Similar to pseudorandom generators
- Whatever function, always some set of keys that is bad
 - but hopefully not your set

Division Hash Function

- $h(k) = k \mod m$
- k_1 and k_2 collide when $k_1=k_2$ (mod m)
 - Unlikely if keys are random
- e.g. if m is a power of 2, just take low order bits of key
 - Very fast (a mask)
 - And people care about very fast in hashing

Problems

- Regularity
 - Suppose keys are x,2x,3x,4x,....
 - Suppose x and chosen m have common divisor d
 - Then (m/d)x is a multiple of m
 - so $i \cdot x = (i+m/d)x \mod m$
 - Only use 1/d fraction of table
 - E.g, m power of 2 and all keys are even
- So make m a prime number
 - But finding a prime number is hard
 - And now you have to divide (slow)

Multiplication Hash Function

- Suppose we're aiming for table size 2^r
- and keys are w bits long, where w > r is the machine word
- Multiply k with some a (fixed for the hash function)
- then keep certain bits of the result as follows

Multiplication Hash Function

Bit shift

• The formula:

$$h(k) = [(a * k) \mod 2^w] >> (w - r)$$

- Multiply by a
- When overflow machine word, wrap
- Take high r bits of resulting machine word
- (Assumes table size smaller than machine word)

Benefit: Multiplying and bit shifts faster than division Good practice: Make a an odd integer (why?) $> 2^{w-1}$

Python Implementation

- Python objects have a hash method
 - Number, string, tuple, any object implementing __hash__
- Maps object to (arbitarily large) integer
 - So really, should be called prehash
- Take mod m to put in a size-m hash table
- Peculiar details
 - Integers map to themselves
 - Strings that differ by one letter don't collide
 - "better" than random for common sequences
 - 1,2,3,4,5 or var_a, var_b, var_c, var_d

Conclusion

- Dictionaries are pervasive
- Hash tables implement them efficiently
 - Under an optimistic assumption of random keys
 - Can be "made true" by choice of hash function
- How did we beat BSTs?
 - Used indexing
 - Sacrificed operations: previous, successor
- Next time: open addressing