6.006- Introduction to Algorithms

Lecture 24

Prof. Patrick Jaillet

Outline

- Decision vs optimization problems
- P, NP, co-NP
- Reductions between problems
- NP-complete problems
- Beyond NP-completeness

Readings CLRS 34

Decision problems

- A *decision problem* asks us to check if something is true (possible answers: 'yes' or 'no')
- Examples:
 - <u>PRIMES</u>
 - Instance: A positive integer **n**
 - Question: is **n** prime?
 - <u>COMPOSITES NUMBERS</u>
 - Instance: A positive integer n
 - Question: are there integers k>1 and p>1 such that n=kp?

Optimization problems

- An *optimization problem* asks us to find, among all feasible solutions, one that maximizes or minimizes a given objective
- Example:
 - single shortest-path problem
 - Instance: Given a weighted graph G, two nodes s and t of G
 - Problem: find a simple path from s to t of minimum total length
 - Possible answers: 'a shortest path from s to t ' or 'no path exists between s and t'.

Decision version of an optimization

- A *decision version* of a given *optimization problem* can easily be defined with the help of a bound on the value of feasible solutions
- Previous example:
 - <u>SINGLE SPP</u>
 - Instance: A weighted graph G, two nodes s and t of G, and a bound b
 - Question: is there a simple path from s to t of length at most b?

Optimization vs Decision version

- Clearly, if one can solve an optimization problem (in polynomial time), then one can answer the decision version (in polynomial time)
- Conversely, by doing binary search on the bound b, one can transform a polynomial time answer to a decision version into a polynomial time algorithm for the corresponding optimization problem
- In that sense, these are essentially equivalent. We will then restrict ourselves to decision problems

The classes P and NP

- P is the class of all decision problems that can be solved in polynomial time.
- NP is the class of all decision problems that can be verified in polynomial time:
 - any "yes-instances" can be checked in polynomial time with the help of a short certificate.
- Clearly $P \subseteq NP$

The class co-NP

- co-NP is the class of all decision problems whose no answers can be verified in polynomial time:
 - any "no-instances" can be checked in polynomial time with the help of a short certificate.
- So clearly $P \subseteq NP \cap co NP$

Reductions between problems

- A polynomial-time reduction from a decision problem A to a decision problem B is a procedure that transforms any instance I_A of A into an instance I_B of B with the following characteristics:
 - the transformation takes polynomial time
 - the answer for I_A is yes iff the answer for I_B is yes
- We say that $A \leq_{P} B$

Reductions between problems

if A ≤_P B, then one can turn an algorithm for B into an algorithm for A:

• Reductions are of course useful for optimization problems as well

VERTEX-COVER $\leq_{\mathbf{P}}$ **DOMINATING SET**

• <u>VERTEX-COVER</u>

- Instance: a graph G and a positive integer k
- Question: is there a *vertex cover* (i.e. set of vertices "covering" all edges) of size k or less?

• DOMINATING SET

- Instance: a graph G and a positive integer p
- Question: is there a *dominating set* (i.e. set of vertices "covering" all vertices) of size p or less?

VERTEX-COVER $\leq_{\mathbf{P}}$ **DOMINATING SET**

VERTEX-COVER $\leq_{\mathbf{P}}$ **CLIQUE**

• <u>VERTEX-COVER</u>

- Instance: a graph G and a positive integer k
- Question: is there a *vertex cover* (i.e. set of vertices "covering" all edges) of size k or less?

• <u>CLIQUE</u>

- Instance: a graph G and a positive integer p
- Question: is there a *clique* (i.e. set of vertices all adjacent to each other) of size p or more?

VERTEX-COVER $\leq_{\mathbf{P}}$ **CLIQUE**

• Consider a third problem:

INDEPENDENT SET

- Instance: a graph G and a positive integer q
- Question: is there an independent set (i.e. set of vertices no-one adjacent to each other) of size q or more?
- For a graph G=(V,E), the following statements are equivalent:
 - V' is a *vertex cover* for G
 - $V \setminus V'$ is an *independent set* for **G**
 - V\V' is a *clique* in the complement G^c of G

Reductions - consequences

- Def: $A \leq_P B$: There is a procedure that transforms any instance I_A of A into an instance I_B of B with the following characteristics:
 - the transformation takes polynomial time
 - the answer for I_A is yes iff the answer for I_B is yes
- If B can be solved in polynomial time, and $A \leq_P B$, then A can be solved in polynomial time.
- If A is "hard", then B should be hard too

The class NP-complete

- A decision problem X is NP-complete if
 - X belongs to NP
 - $-A \leq_{P} X$ for all A in NP
- Theorem[Cook-Karp-Levin]: Vertex-Cover is NPcomplete
- Corollary: Dominating Set and Clique are NPcomplete, and so are many other problems (Knapsack, Hamiltonian circuit, Longest path problem, etc.)

One view of various classes ...

Beyond NP-completeness

- On the negative side, there are decision problems that can be proved *not* to be in NP
 - decidable but not in NP
 - undecidable (ouch !!)
- On the positive side, some "hard" optimization problems can become easier to approximate ... unfortunately not all ...