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Lecture overview

Dynamic Programming III

review: longest common subsequence (LCS)
recursion + memoization v.s. bottom up
— (1llustration with LCS)
use of parent pointers
— (1llustration with LCS)
knapsack problem
text justification



Longest Common Subsequence (LCS)

* given two sequences x[1..m] and y[1..n], find a
longest subsequence LCS(x,y) common to both:

y: B D C A B A

 denote the length of a sequence s by |s|
e first get |[LCS(x,y)|



LCS: A recurrence

 consider prefixes of x and y

— x[1..1] 1th prefix of x[1..m]

— y[1..J] jth prefix of y[1..n]
 define c[i,j] = [LCS(x[1..i],y[1../])

0 ifi=0orj=0,
cli,jl=4cli-1,j—1]+1 ifi,j >0 andx, =y,

max(c[i -1, j],cli,j—1]) ifi,j>0andx; =y ..

running time 1s .... O(n>xm).... (if done well !)



L.CS recursion‘+memoization

0 if a empty or  empty,
cla,B] =1cl prefixa, prefixf3] + 1 if end(a) = end(p),
\max(c[ prefixa, pl.cla,prefixfp]) if end(a) = end(f).
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LCS — bottom up & pointers

ILCS(x, )|
m «— length|x]

n < length|y]

fori < 1 tom 0 ifi=0orj=0,
do c[i, 0]« 0 cli, jl=qci-1j-1]+1 if i, j>0andx, =y,
forj—Oton max(c[i-1, jl,c[i,j—1]) ifi,j>0andx, = y,.

do [0, j] <O
fori<—1tom
do forj — 1 ton
doifx;, =y,
then c[i, j] < c[i-1,j-1]+ 1
pli, j1 < “N\”
else if c[i-1, j | > c[i, j-1]
then c[i, j] < c[i-1, ]

return c and p
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Use of parent pointers

* we found length of LCS, what about actual LCS?
* using the “parent pointers” p

—p remembers if c¢[1,j] used c[1-1, j-1], c[1, J-1],
or c[1-1,]]

— starting at ¢c[m,n]:
e 1f c[m-1,n-1], then x|m]=y[n] 1s part of op?
—put 1t at end and output opf from ¢[m-1,n-1]

e else, output opf from ¢[m-1,n] or ¢[m,n-1]



Constructing an LCS

PRINT-LCS (p, x, i, j)
iti=0o0r;j=0
then return
if pli, j1="X\"
then PRINT-LCS(p, x, i-1, j-1)
print x;
elseif p[i, j] =“1"
then PRINT-LCS(p, x, i-1, j)
else PRINT-LCS(p, x, i, j-1)

initial call 1s PRINT-LCS (p, x, m, n)
running time: O(m+n)
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Bottom-Up DP

* we’ve been looking at DP recurrences
— which suggests recursive implementations
—and memoize results as you get them

* can also solve “bottom up”
— compute sub-problems before super-problem
— put results in memo table for later use

* how to order problems to ensure this works?



The DP DAG

 define a graph representing DP
— sub-problems are vertices
— edge x — y if problem x depends on problem y
* what order of problem solving works?
— need order where x follows yif x — y
— Topological Sort!
— can do so if graph 1s a DAG
— what 1f not?
* cyclic problem dependency
e can’t use DP



Knapsack Problem

Knapsack (or cart) of size S
Collection of n items; item 1 has size s. and value v,
Goal: choose subset with 2. s. < S maximizing 2. v,
Ideas?
—try all possible subsets: 2"
— greedy?

* choose 1tems maximizing value ?

* choose 1tems maximizing value/size
—what if they don’t exactly fit?



Some bad and better news

* For arbitrary (real) , Knapsack 1s hard (NP-hard)

—no polynomial time algorithm in 30 years of
trying

—1t’s exactly as hard as several thousand other
important problems

—and we haven’t been able to find polynomial
tm%le algorithms for them for 30 years of trying
either

— most folks think there 1s none
* Better news:
— There 1s a DP algorithm 1f sizes are integers



First attempt

* subproblem?

— Val[1] = Best value obtained for items[1:n]
e guess?

— whether or not to include 1tem 1

* recurrence?
— Val[1] = Val[1+1] = .
or v, + Val[1+1] 1f total size < S?

* not a well-defined recurrence: doesn’t have enough
info to tell 1f item 1 will fit



Second Attempt

* Solve a more complicated problem

—1nitial problem is a special case

— the complicated version has a recursion
* Val[1,X] = max value for items[1:n] 1f space 1s X
* Recurrence:

—1f's, > X then don’t include 1, otherwise decide with
— Val[1, X] =max(Val[i+ 1, X], v.+ Val[i + 1, X —s,])
— Opt = Val[0,S]



Analysis

* Is the recurrence a DAG?
— yes, each problem depends on bigger 1 and smaller X
— compute by decreasing 1 and increasing X
e Runtime?
— each subproblem has 2 guesses: O(1)
— one subproblem for each 1, X<S
— O(nS) subproblems
— Total time: O(nS)
e s this polynomial?



Text Justification — Word Processing

* A user writes stream of text

WP has to break it into lines that aren’t too long
* obvious algorithm => greedy:

— put as much on first line as possible

— then continue to lay out rest

— used by MSWord, OpenOffice
* Problem: suboptimal layouts !!



A Better Approach

* define an objective function
—measure of how good a given layout 1s

—not an algorithm, just a metric

* optimize the objective
—here’s where you think of algorithm



Layout Function

* want to penalize big spaces
* what objective would do that?
—sum of leftover spaces?

— that’s constant for a given number of
lines (Just total space minus number of
characters)

 should penalize big spaces “extra”

— (LaTeX uses sum of cubes of leftovers)



Formalize

input: array of words (lengths) w[0..n]

split into lines L, L, ...

badness(L) = (page width — total length(L))’
— (or oo 1f total length > page width)

objective: break into lines L, L,... minimizing
2. badness(L,)



Can We DP?

Subproblems?
— DP[1] = min badness for words w[i:n]
—n subproblems where n 1s number of words
* Quesses for problem 1?
— Where to end first line 1n optimal layout
* Recurrence?
— DP[1] = min badness(1,)) + DP[j] for j in range(1+1,n)
— DP[n]=0
— OPT = DP[0]
e Runtime? O(n?) ?



