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Lecture overview 
Dynamic Programming III 

•  review: longest common subsequence (LCS) 
•  recursion + memoization v.s. bottom up 

– (illustration with LCS) 
•  use of parent pointers 

– (illustration with LCS) 
•  knapsack problem 
•  text justification 



Longest Common Subsequence (LCS) 

•  given two sequences x[1..m] and y[1..n], find a 
longest subsequence LCS(x,y) common to both: 

 x:   A  B  C  B  D  A  B 

 y:   B  D  C  A  B  A 

•  denote the length of a sequence s by |s| 
•  first get |LCS(x,y)| 



LCS: A recurrence 
•  consider prefixes of x and y 

–  x[1..i] ith prefix of x[1..m] 
–  y[1..j] jth prefix of y[1..n] 

•  define c[i,j] = |LCS(x[1..i],y[1..j]) 

running time is .... O(n×m).... (if done well !) € 

c[i, j] =

0 if i = 0 or j = 0,
c[i −1, j −1] +1 if i, j > 0 and xi = y j ,
max(c[i −1, j],c[i, j −1]) if i, j > 0 and xi ≠ y j .

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 



LCS recursion+memoization 

€ 

c[α,β] =

0 if α empty or β empty,
c[prefixα, prefixβ] +1 if end(α) =  end(β),
max(c[prefixα,β],c[α, prefixβ]) if end(α) ≠  end(β).

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

c[ABCB,BDC] 

c[ABC,BDC]                            c[ABCB,BD] 

c[AB,BD]+1                              c[ABC,BD]                 c[ABCB,B] 

        c[A,BD]     c[AB,B]                 c[AB,BD]           c[ABC,B]               c[ABC,]+1=1 

c[,BD]=0   c[A,B]  c[A,]+1=1                                       c[AB,B]      c[ABC,]=0 

         c[,B]=0   c[A,]=0 



LCS – bottom up & pointers 
|LCS(x, y)| 
m ← length[x] 
n ← length[y] 
for i ← 1 to m 
     do c[i, 0] ← 0 
for j ← 0 to n 
     do c[0, j] ← 0 
for i ← 1 to m 
     do for j ← 1 to n 
           do if xi = yj 
                    then c[i, j] ← c[i-1, j-1] + 1 
                            p[i, j] ← “   ” 
                    else if c[i-1, j ] ≥ c[i, j-1] 
                           then c[i, j] ← c[i-1, j] 
                                   p[i, j] ← “↑” 
                           else  c[i, j] ← c[i, j-1] 
                                   p[i, j] ← “←” 
return c and p 



Example 
 x:  A  B  C  B 
 y:  B  D  C 



Use of parent pointers 

•  we found length of LCS, what about actual LCS? 
•  using the “parent pointers” p 

– p remembers if c[i,j] used c[i-1, j-1], c[i, j-1], 
or c[i-1,j] 

– starting at c[m,n]: 
• if c[m-1,n-1], then x[m]=y[n] is part of opt 

– put it at end and output opt from c[m-1,n-1] 
• else, output opt from c[m-1,n] or c[m,n-1] 



Constructing an LCS 

PRINT-LCS (p, x, i, j) 
if i = 0 or j = 0 
    then return 
if p[i, j] = “   ” 
    then PRINT-LCS(p, x, i-1, j-1) 
             print xi 
    elseif p[i, j] = “↑” 
              then PRINT-LCS(p, x, i-1, j) 
else PRINT-LCS(p, x, i, j-1) 

initial call is PRINT-LCS (p, x, m, n) 
running time: O(m+n) 



Example 
 x:  A  B  C  B 
 y:  B  D  C 



Bottom-Up DP 

•  we’ve been looking at DP recurrences 
– which suggests recursive implementations  
– and memoize results as you get them 

•  can also solve “bottom up” 
– compute sub-problems before super-problem 
– put results in memo table for later use 

•  how to order problems to ensure this works? 



The DP DAG 

•  define a graph representing DP 
–  sub-problems are vertices 
–  edge  x → y  if problem x depends on problem y 

•  what order of problem solving works? 
–  need order where x follows y if x → y  
–  Topological Sort! 
–  can do so if graph is a DAG 
– what if not? 

•  cyclic problem dependency 
•  can’t use DP 



Knapsack Problem 

•  Knapsack (or cart) of size S 
•  Collection of n items; item i has size si and value vi 

•  Goal: choose subset with Σi si < S maximizing Σi vi 

•  Ideas? 
– try all possible subsets: 2n 

– greedy? 
• choose items maximizing value ? 
• choose items maximizing value/size 

– what if they don’t exactly fit? 



Some bad and better news 

•  For arbitrary (real) , Knapsack is hard (NP-hard) 
– no polynomial time algorithm in 30 years of 

trying 
–  it’s exactly as hard as several thousand other 

important problems 
– and we haven’t been able to find polynomial 

time algorithms for them for 30 years of trying 
either 

– most folks think there is none 
•  Better news: 

– There is a DP algorithm if sizes are integers 



First attempt 

•  subproblem? 
– Val[i] = Best value obtained for items[i:n] 

•  guess? 
– whether or not to include item i 

•  recurrence? 
– Val[i] = Val[i+1]  

              or vi + Val[i+1] if total size < S? 
•  not a well-defined recurrence: doesn’t have enough 

info to tell if item i will fit 



Second Attempt 

•  Solve a more complicated problem 
– initial problem is a special case 
– the complicated version has a recursion 

•  Val[i,X] = max value for items[i:n] if space is X 
•  Recurrence: 

–  if si >  X then don’t include i, otherwise decide with 
– Val[i, X] = max(Val[i + 1, X], vi + Val[i + 1, X – si]) 
– Opt = Val[0,S] 



Analysis 

•  Is the recurrence a DAG? 
–  yes, each problem depends on bigger i and smaller X 
–  compute by decreasing i and increasing X 

•  Runtime? 
–  each subproblem has 2 guesses: O(1) 
–  one subproblem for each i, X<S 
– O(nS) subproblems 
–  Total time: O(nS) 

•  Is this polynomial? 



Text Justification – Word Processing 

•  A user writes stream of text 
•  WP has to break it into lines that aren’t too long 
•  obvious algorithm => greedy: 

–  put as much on first line as possible 
–  then continue to lay out rest 
–  used by MSWord, OpenOffice 

•  Problem: suboptimal layouts !! 



A Better Approach 

•  define an objective function 
– measure of how good a given layout is 
– not an algorithm, just a metric 

•  optimize the objective 
– here’s where you think of algorithm 



Layout Function 

•  want to penalize big spaces 
•  what objective would do that? 

– sum of leftover spaces? 
– that’s constant for a given number of 

lines (just total space minus number of 
characters) 

•  should penalize big spaces “extra” 
– (LaTeX uses sum of cubes of leftovers) 



Formalize 

•  input: array of words (lengths) w[0..n] 
•  split into lines L1, L2 … 
•  badness(L) = (page width – total length(L)) 

– (or      if total length > page width) 
•  objective: break into lines L1, L2… minimizing 

      Σi badness(Li) 

8 

3 



Can We DP? 

•  Subproblems? 
– DP[i] = min badness for words w[i:n] 
– n subproblems where n is number of words 

•  Guesses for problem i? 
– Where to end first line in optimal layout 

•  Recurrence? 
– DP[i] = min badness(i,j) + DP[j] for j in range(i+1,n) 
– DP[n]=0 
– OPT = DP[0] 

•  Runtime?  O(n2) ? 


