
6.006- Introduction to Algorithms

Lecture 20
Prof. Patrick Jaillet

Lecture overview
Dynamic Programming III

•  review: longest common subsequence (LCS)
•  recursion + memoization v.s. bottom up

– (illustration with LCS)
•  use of parent pointers

– (illustration with LCS)
•  knapsack problem
•  text justification

Longest Common Subsequence (LCS)

•  given two sequences x[1..m] and y[1..n], find a
longest subsequence LCS(x,y) common to both:

 x: A B C B D A B

 y: B D C A B A

•  denote the length of a sequence s by |s|
•  first get |LCS(x,y)|

LCS: A recurrence
•  consider prefixes of x and y

–  x[1..i] ith prefix of x[1..m]
–  y[1..j] jth prefix of y[1..n]

•  define c[i,j] = |LCS(x[1..i],y[1..j])

running time is O(n×m).... (if done well !) €

c[i, j] =

0 if i = 0 or j = 0,
c[i −1, j −1] +1 if i, j > 0 and xi = y j ,
max(c[i −1, j],c[i, j −1]) if i, j > 0 and xi ≠ y j .

⎧

⎨
⎪

⎩
⎪

LCS recursion+memoization

€

c[α,β] =

0 if α empty or β empty,
c[prefixα, prefixβ] +1 if end(α) = end(β),
max(c[prefixα,β],c[α, prefixβ]) if end(α) ≠ end(β).

⎧

⎨
⎪

⎩
⎪

c[ABCB,BDC]

c[ABC,BDC] c[ABCB,BD]

c[AB,BD]+1 c[ABC,BD] c[ABCB,B]

 c[A,BD] c[AB,B] c[AB,BD] c[ABC,B] c[ABC,]+1=1

c[,BD]=0 c[A,B] c[A,]+1=1 c[AB,B] c[ABC,]=0

 c[,B]=0 c[A,]=0

LCS – bottom up & pointers
|LCS(x, y)|
m ← length[x]
n ← length[y]
for i ← 1 to m
 do c[i, 0] ← 0
for j ← 0 to n
 do c[0, j] ← 0
for i ← 1 to m
 do for j ← 1 to n
 do if xi = yj
 then c[i, j] ← c[i-1, j-1] + 1
 p[i, j] ← “ ”
 else if c[i-1, j] ≥ c[i, j-1]
 then c[i, j] ← c[i-1, j]
 p[i, j] ← “↑”
 else c[i, j] ← c[i, j-1]
 p[i, j] ← “←”
return c and p

Example
 x: A B C B
 y: B D C

Use of parent pointers

•  we found length of LCS, what about actual LCS?
•  using the “parent pointers” p

– p remembers if c[i,j] used c[i-1, j-1], c[i, j-1],
or c[i-1,j]

– starting at c[m,n]:
• if c[m-1,n-1], then x[m]=y[n] is part of opt

– put it at end and output opt from c[m-1,n-1]
• else, output opt from c[m-1,n] or c[m,n-1]

Constructing an LCS

PRINT-LCS (p, x, i, j)
if i = 0 or j = 0
 then return
if p[i, j] = “ ”
 then PRINT-LCS(p, x, i-1, j-1)
 print xi
 elseif p[i, j] = “↑”
 then PRINT-LCS(p, x, i-1, j)
else PRINT-LCS(p, x, i, j-1)

initial call is PRINT-LCS (p, x, m, n)
running time: O(m+n)

Example
 x: A B C B
 y: B D C

Bottom-Up DP

•  we’ve been looking at DP recurrences
– which suggests recursive implementations
– and memoize results as you get them

•  can also solve “bottom up”
– compute sub-problems before super-problem
– put results in memo table for later use

•  how to order problems to ensure this works?

The DP DAG

•  define a graph representing DP
–  sub-problems are vertices
–  edge x → y if problem x depends on problem y

•  what order of problem solving works?
–  need order where x follows y if x → y
–  Topological Sort!
–  can do so if graph is a DAG
– what if not?

•  cyclic problem dependency
•  can’t use DP

Knapsack Problem

•  Knapsack (or cart) of size S
•  Collection of n items; item i has size si and value vi

•  Goal: choose subset with Σi si < S maximizing Σi vi

•  Ideas?
– try all possible subsets: 2n

– greedy?
• choose items maximizing value ?
• choose items maximizing value/size

– what if they don’t exactly fit?

Some bad and better news

•  For arbitrary (real) , Knapsack is hard (NP-hard)
– no polynomial time algorithm in 30 years of

trying
–  it’s exactly as hard as several thousand other

important problems
– and we haven’t been able to find polynomial

time algorithms for them for 30 years of trying
either

– most folks think there is none
•  Better news:

– There is a DP algorithm if sizes are integers

First attempt

•  subproblem?
– Val[i] = Best value obtained for items[i:n]

•  guess?
– whether or not to include item i

•  recurrence?
– Val[i] = Val[i+1]

 or vi + Val[i+1] if total size < S?
•  not a well-defined recurrence: doesn’t have enough

info to tell if item i will fit

Second Attempt

•  Solve a more complicated problem
– initial problem is a special case
– the complicated version has a recursion

•  Val[i,X] = max value for items[i:n] if space is X
•  Recurrence:

–  if si > X then don’t include i, otherwise decide with
– Val[i, X] = max(Val[i + 1, X], vi + Val[i + 1, X – si])
– Opt = Val[0,S]

Analysis

•  Is the recurrence a DAG?
–  yes, each problem depends on bigger i and smaller X
–  compute by decreasing i and increasing X

•  Runtime?
–  each subproblem has 2 guesses: O(1)
–  one subproblem for each i, X<S
– O(nS) subproblems
–  Total time: O(nS)

•  Is this polynomial?

Text Justification – Word Processing

•  A user writes stream of text
•  WP has to break it into lines that aren’t too long
•  obvious algorithm => greedy:

–  put as much on first line as possible
–  then continue to lay out rest
–  used by MSWord, OpenOffice

•  Problem: suboptimal layouts !!

A Better Approach

•  define an objective function
– measure of how good a given layout is
– not an algorithm, just a metric

•  optimize the objective
– here’s where you think of algorithm

Layout Function

•  want to penalize big spaces
•  what objective would do that?

– sum of leftover spaces?
– that’s constant for a given number of

lines (just total space minus number of
characters)

•  should penalize big spaces “extra”
– (LaTeX uses sum of cubes of leftovers)

Formalize

•  input: array of words (lengths) w[0..n]
•  split into lines L1, L2 …
•  badness(L) = (page width – total length(L))

– (or if total length > page width)
•  objective: break into lines L1, L2… minimizing

 Σi badness(Li)

8

3

Can We DP?

•  Subproblems?
– DP[i] = min badness for words w[i:n]
– n subproblems where n is number of words

•  Guesses for problem i?
– Where to end first line in optimal layout

•  Recurrence?
– DP[i] = min badness(i,j) + DP[j] for j in range(i+1,n)
– DP[n]=0
– OPT = DP[0]

•  Runtime? O(n2) ?

