6.006- Introduction to Algorithms

Lecture 20

Prof. Patrick Jaillet

Lecture overview

Dynamic Programming III

- review: longest common subsequence (LCS)
- recursion + memoization v.s. bottom up

-(illustration with LCS)

• use of parent pointers

-(illustration with LCS)

- knapsack problem
- text justification

Longest Common Subsequence (LCS)

• given two sequences x[1..m] and y[1..n], find a longest subsequence LCS(x,y) common to both:

- denote the length of a sequence s by |s|
- first get |LCS(x,y)|

LCS: A recurrence

- consider prefixes of x and y
 - -x[1..i] ith prefix of x[1..m]
 - y[1..j] jth prefix of y[1..n]
- define c[i,j] = |LCS(x[1..i],y[1..j])

$$c[i,j] = \begin{cases} 0 & \text{if } i = 0 \text{ or } j = 0, \\ c[i-1,j-1]+1 & \text{if } i,j > 0 \text{ and } x_i = y_j, \\ \max(c[i-1,j],c[i,j-1]) & \text{if } i,j > 0 \text{ and } x_i \neq y_j. \end{cases}$$

running time is $O(n \times m)$ (if done well !)

LCS recursion+memoization

LCS – bottom up & pointers

Examplex:ABCBy:BDC

	y_{j}	B	D	С
<i>x</i> _i	0	0	0	0
Α	0	↑ 0	↑ 0	↑ 0
В	0	\mathbf{x}^{1}	1 ←	1 ★
С	0	↑ ¹	↑ ¹	\searrow^2
В	0	\mathbf{x}^{1}	↑ ¹	↑ ²

Use of parent pointers

- we found length of LCS, what about actual LCS?
- using the "parent pointers" p
 - -p remembers if c[i,j] used c[i-1, j-1], c[i, j-1], or c[i-1,j]
 - starting at c[m,n]:
 - if c[m-1,n-1], then x[m]=y[n] is part of *opt*put it at end and output *opt* from c[m-1,n-1]
 - else, output *opt* from c[m-1,n] or c[m,n-1]

Constructing an LCS

PRINT-LCS (p, x, i, j)if i = 0 or j = 0then return if p[i, j] = `````then PRINT-LCS(p, x, i-1, j-1)print x_i elseif $p[i, j] = ``^``$ then PRINT-LCS(p, x, i-1, j)else PRINT-LCS(p, x, i, j-1)

initial call is PRINT-LCS (p, x, m, n) running time: O(m+n)

x:ABCBy:BDC

	<i>y</i> _j	B	D	С
x _i	0	0	0	0
A	0	↑ 0	↑ 0	↑ 0
В	0		1	1 ★
С	0	↑ ¹	↑ ¹	2
В	0	\mathbf{x}^1	↑ ¹	2

Bottom-Up DP

- we've been looking at DP recurrences
 - -which suggests recursive implementations
 - and memoize results as you get them
- can also solve "bottom up"
 - compute sub-problems before super-problem
 - put results in memo table for later use
- how to order problems to ensure this works?

The DP DAG

- define a graph representing DP
 - sub-problems are vertices
 - edge x \rightarrow y if problem x depends on problem y
- what order of problem solving works?
 - need order where x follows y if $x \rightarrow y$
 - Topological Sort!
 - can do so if graph is a DAG
 - what if not?
 - cyclic problem dependency
 - can't use DP

Knapsack Problem

- Knapsack (or cart) of size S
- Collection of n items; item i has size s_i and value v_i
- Goal: choose subset with $\Sigma_i s_i < S$ maximizing $\Sigma_i v_i$
- Ideas?
 - try all possible subsets: 2ⁿ
 - greedy?
 - choose items maximizing value ?
 - choose items maximizing value/size -what if they don't exactly fit?

Some bad and better news

- For arbitrary (real), Knapsack is hard (NP-hard)
 - no polynomial time algorithm in 30 years of trying
 - it's exactly as hard as several thousand other important problems
 - and we haven't been able to find polynomial time algorithms for them for 30 years of trying either
 - most folks think there is none
- Better news:
 - There is a DP algorithm if sizes are integers

First attempt

- subproblem?
 - Val[i] = Best value obtained for items[i:n]
- guess?
 - whether or not to include item i
- recurrence?
 - -Val[i] = Val[i+1]or v_i + Val[i+1] if total size < S?
- not a well-defined recurrence: doesn't have enough info to tell if item i will fit

Second Attempt

- Solve a more complicated problem
 - initial problem is a special case
 - the complicated version has a recursion
- Val[i,X] = max value for items[i:n] if space is X
- Recurrence:
 - if s_i > X then don't include i, otherwise decide with
 Val[i, X] = max(Val[i + 1, X], v_i + Val[i + 1, X s_i])
 Opt = Val[0,S]

Analysis

- Is the recurrence a DAG?
 - yes, each problem depends on bigger i and smaller X
 - compute by decreasing i and increasing X
- Runtime?
 - each subproblem has 2 guesses: O(1)
 - one subproblem for each i, X<S</p>
 - O(nS) subproblems
 - Total time: O(nS)
- Is this polynomial?

Text Justification – Word Processing

- A user writes stream of text
- WP has to break it into lines that aren't too long
- obvious algorithm => greedy:
 - put as much on first line as possible
 - then continue to lay out rest
 - used by MSWord, OpenOffice
- Problem: suboptimal layouts !!

A Better Approach

- define an objective function

 measure of how good a given layout is
 not an algorithm, just a metric
- optimize the objective
 - -here's where you think of algorithm

Layout Function

- want to penalize big spaces
- what objective would do that?
 - sum of leftover spaces?
 - that's constant for a given number of lines (just total space minus number of characters)
- should penalize big spaces "extra"
 - -(LaTeX uses sum of cubes of leftovers)

Formalize

- input: array of words (lengths) w[0..n]
- split into lines L₁, L₂...
- badness(L) = (page width total length(L))³
 (or ∞ if total length > page width)
- objective: break into lines $L_1, L_2...$ minimizing Σ_i badness(L_i)

Can We DP?

- Subproblems?
 - DP[i] = min badness for words w[i:n]
 - n subproblems where n is number of words
- Guesses for problem i?
 - Where to end first line in optimal layout
- Recurrence?
 - DP[i] = min badness(i,j) + DP[j] for j in range(i+1,n)
 - DP[n]=0
 - OPT = DP[0]
- Runtime? $O(n^2)$?