6.006- Introduction to Algorithms

Lecture 14

Prof. Patrick Jaillet

Lecture overview

Shortest paths – Definition

- Generic algorithm
- Some properties

Readings: CLRS 24 (intro)

Paths in graphs

Consider a directed graph G = (V, E) with edgeweight function $w : E \to \mathbb{R}$. The *weight* of path $p = v_1 \to v_2 \to \cdots \to v_k$ is defined to be the sum of all weights on the path, i.e., $w(p) = w(v_1, v_2) + \ldots + w(v_{k-1}, v_k)$

Example:

Shortest paths - definition

- A *shortest path* from u to v is a path of minimum weight from u to v
- The *shortest-path weight* $\delta(u, v)$ from u to v is defined as the weight of any shortest path from u to v

Special cases:

no path from *u* to *v* exists: δ(*u*, *v*) = ∞
"you cannot get there from here"
negative weight cycles...=> undefined

Well-definedness of shortest paths

If a graph *G* contains a negative-weight cycle, then some shortest paths may not exist.

Negative weight cycles: $\delta(s, c)$ undefined (algorithm should detect such situations)

Single source shortest path problem

<u>Problem:</u> Given a directed graph G = (V, E) with edge-weight function w, and a node s, find $\delta(s, v)$ (and a corresponding path) for all v in V

Today:

- Generic algorithm and some structural properties Next three lectures:
- Bellman-Ford: deals with negative weights
- Dijkstra algorithm: fast and faster, but assumes nonnegative weights

Digression

Question: why can't we just enumerate all paths to find the shortest one ?

Answer: there can be exponentially many of them!

 2^n different paths from s to v_n , 3n+1 vertices

Useful data structures

- d[v] =length of best path from *s* to $v \le so = far$
- initialization d[s] = 0; $d[v] = \infty$ otherwise
- at any step update d[v] so that $d[v] \ge \delta(s, v)$

- $\pi[v]$ = predecessor of v on a best path <u>so far</u>
- initialization $\pi[s] = s; \pi[v] = nil$ otherwise

A generic algorithm

 $d[s] \leftarrow 0$ $\pi[s] \leftarrow s$ for each $v \in V - \{s\}$ $do \ d[v] \leftarrow \infty$ $\pi[v] \leftarrow nil$

while there is an edge $(u, v) \in E$ s. t. d[v] > d[u] + w(u, v) do select one such edge "somehow" set $d[v] \leftarrow d[u] + w(u, v)$ $\pi[v] \leftarrow u$ endwhile

relaxation step

(the trick is in the "somehow" step...)

Will not stop when negative cycles

What if no negative cycle

Analysis for previous example ...

Let:

- n+1 be the number of vertices
- T(n) number of relaxations on v_1, \dots, v_{n+1}

We have: T(n)=2+T(n-2)+1+T(n-2)=2 T(n-2)+3 $T(n)=\Theta(2^{n/2})$ Recursion on $v_3,...v_{n+1}$

Conclusion: need to be careful how we relax

Another digression

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. By contradiction ...

Triangle inequality

Theorem. For all $u, v, x \in V$, we have $\delta(u, v) \le \delta(u, x) + \delta(x, v)$.

Proof.

