
6.006- Introduction to Algorithms

Lecture 14
Prof. Patrick Jaillet

Lecture overview

Shortest paths
– Definition
– Generic algorithm
– Some properties

Readings: CLRS 24 (intro)

Paths in graphs
Consider a directed graph G = (V, E) with edge-
weight function w : E → R.
The weight of path p = v1 →v2 → → vk is
defined to be the sum of all weights on the path,
i.e., w(p) = w(v1,v2) +…+ w(vk-1,vk)

v1
v2

v3
v4

v5 4 –2 –5 1

Example:

w(p) = –2

Shortest paths - definition

•  A shortest path from u to v is a path of
minimum weight from u to v
•  The shortest-path weight δ(u, v) from u to v
is defined as the weight of any shortest path
from u to v

Special cases:
1.  no path from u to v exists: δ(u, v) = ∞	

 “you cannot get there from here”
2. negative weight cycles…=> undefined

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle,
then some shortest paths may not exist.

Negative weight cycles: δ(s, c) undefined
(algorithm should detect such situations)

A

B
S

C

D

E

2

-2

1

3
4

2
-6

Single source shortest path problem

Problem: Given a directed graph G = (V, E) with
edge-weight function w, and a node s, find δ(s, v)
(and a corresponding path) for all v in V

Today:
•  Generic algorithm and some structural properties
Next three lectures:
•  Bellman-Ford: deals with negative weights
•  Dijkstra algorithm: fast and faster, but assumes non-
negative weights

Digression
Question: why can’t we just enumerate all paths to
find the shortest one ?

Answer: there can be exponentially many of them!

s … vn

2n different paths from s to vn , 3n+1 vertices

v2 v1

Useful data structures

•  d[v] = length of best path from s to v so far
•  initialization d[s] = 0; d[v] = ∞ otherwise
•  at any step update d[v] so that d[v] ≥ δ(s, v)

•  π[v] = predecessor of v on a best path so far
•  initialization π[s] = s; π[v] = nil otherwise

A generic algorithm
d[s] ← 0
π[s] ← s
for each v ∈ V – {s}

do d[v] ← ∞	

   π[v] ← nil 	

initialization

while there is an edge (u, v) ∈ E s. t.
 d[v] > d[u] + w(u, v) do
 select one such edge “somehow”
 set d[v] ← d[u] + w(u, v)
 π[v] ← u
endwhile

relaxation
step

(the trick is in the “somehow” step…)

Will not stop when negative cycles

0
v

1 3 4

-1

u

d[u]

1 2 1

1 -4

0
-1
-2

2
1
0

etc

What if no negative cycle

v1 v2 v3 v4 v5 v7 v6

4

4 4

2

2 2 1 1

1 1/2

1/2

4 8 10 12 13 14
13

10 11 12
11

4 6 8 9 10
9

6 7 8
7

Analysis for previous example ...

T(n)= 2+T(n-2)+1+T(n-2) = 2 T(n-2) +3

T(n)=Θ(2n/2)

Let:
•  n+1 be the number of vertices
•  T(n) number of relaxations on v1,…vn+1

We have:
Relax (v1,v2) and (v2,v3) Relax (v1,v3)

Recursion on v3,…vn+1

Conclusion: need to be careful how we relax

Another digression

T(n) = C1 + C2T(n - C3) T(n) = C1 + C2T(n / C3)

Exponential Bad Polynomial Good

if C2 > 1, trouble!
Divide & Explode

 C2 > 1 okay provided C3 > 1
 if C3 > 1
Divide & Conquer

Optimal substructure

Theorem. A subpath of a shortest path is a
shortest path.

Proof. By contradiction ...

p = v0 vi vj vk

p0j pij pjk

pij’

Triangle inequality

Theorem. For all u, v, x ∈ V, we have
δ(u, v) ≤ δ(u, x) + δ(x, v).

u

Proof.

x

v δ(u, v)

δ(u, x) δ(x, v)

