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Lecture Overview 

 Searching I: Graph Search and 
Representations 

Readings: CLRS 22.1-22.3, B.4 



Graphs 

•  G=(V,E) 
•  V a set of vertices 

–  usually number denoted by n 
•  E ⊆ V × V a set of edges (pairs of vertices) 

–  usually number denoted by m 
–  note m < n(n-1) = O(n2) 

•  Flavors: 
–  pay attention to order: directed graph 
–  ignore order: undirected graph 

• Then only n(n-1)/2 possible edges 



Examples 

•  Undirected 
•  V={a,b,c,d} 
•  E={{a,b}, {a,c}, {b,c}, 

{b,d}, {c,d}} 

•  Directed 
•  V = {a,b,c} 
•  E = {(a,c), (a,b) (b,c), 

(c,b)}  
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Instances/Applications 

•  Web 
–  crawling 

•  Social Network 
–  friend finder 

•  Computer Networks 
–  internet routing 
–  connectivity 

•  Game states 
–  rubik’s cube, chess 



Pocket Cube 

•  2 × 2 × 2 Rubik’s cube 
•  Start with any colors 
•  Moves are quarter 

turns of any face 
•  “Solve” by making 

each side one color 



Configuration Graph 

•  One vertex for each state 
•  One edge for each move from a vertex 

– 6 faces to twist 
– 3 nontrivial ways to twist (1/4, 2/4, 3/4) 
– So, 18 edges out of each state 

•  Solve cube by finding a path (of moves) 
from initial state (vertex) to “solved” state 



Combinatorics 

•  State for each arrangement and orientation of 8 
cubelets 
– 8 cubelets in each position: 8! Possibilities 
– Each cube has 3 orientations: 38 Possibilities 
– Total:  8! × 38= 264,539,320 vertices 

•  But divide out 24 orientations of whole cube 
•  And there are three separate connected 

components (twist one cube out of place 3 
ways) 

•  Result: 3,674,160 states to search 



GeoGRAPHy 
•  One start vertex 
•  6 others reachable by 

one 90° turn 
•  From those, 27 others 

by another 
•  And so on 

distance 90° 90° and 180° 
0 1 1 
1 6 9 
2 27 54 
3 120 321 
4 534 1847 
5 2,256 9,992 
6 8,969 50,136 
7 33,058 227,526 
8 114,149 870,072 
9 360,508 1,887,748 
10 930,588 623,800 
11 1,350,852 2,644 
12 782,536 
13 90,280 
14 276 

diameter 



Representation 

•  To solve graph problems, must examine graph 
•  So need to represent in computer 
•  Four representations with pros/cons 

– Adjacency lists (of neighbors of each vertex) 
–  Incidence lists (of edges from each vertex) 
– Adjacency matrix (of which pairs are adjacent) 
–  Implicit representation (as neighbor function) 



Adjacency List 

•  For each vertex v, list its neighbors (vertices to 
which it is connected by an edge) 
– Array A of || V ||  linked lists 
– For v∈V, list A[v] stores neighbors {u | (v,u) ∈ 

E} 
– Directed graph only stores outgoing neighbors 
– Undirected graph stores edge in two places 

•  In python, A[v] can be hash table 
–  v any hashable object 



Example 
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(Object Oriented Variants) 

•  object for each vertex u 
–  u.neighbors is list of neighbors for u 

•  incidence list: object for each edge e 
–  u.edges = list of outgoing edges from u 
–  e object has endpoints e.head and e.tail 

•  can store additional info per vertex or edge 
without hashing 

e.a e.be



Adjacency Matrix 

•  assume V={1, …, n} 
•  matrix A=(aij) is n × n 

– row i, column j 
– aij = 1 if (i,j) ∈ E 
– aij = 0 otherwise 

•  (store as, e.g., array of arrays) 



Example 

1 2 3 
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Graph Algebra 

•  can treat adjacency matrix as matrix 
•  e.g., A2 = length-2 paths between vertices .. 
•  [note: A∞ gives pagerank of vertices..] 
•  undirected graph  symmetric matrix 
•  [eigenvalues useful for many things, but---

rarely used in graph algorithms] 



Tradeoff: Space 

•  Adjacency lists use one list node per edge 
– And two machine words per node 
–  So space is Θ(mw) bits (m=#edges, w=word size) 

•  Adjacency matrix uses n2 entries 
– But each entry can be just one bit 
–  So Θ(n2) bits 

•  Matrix better only for very dense graphs 
– m near n2 

–  (Google can’t use matrix) 



Tradeoff: Time 

•  Add edge 
–  both data structures are O(1) 

•  Check “is there an edge from u to v”? 
– matrix is O(1) 
–  adjacency list must be scanned 

•  Visit all neighbors of v (very common) 
–  adjacency list is Ο(neighbors) 
– matrix is Θ(n) 

•  Remove edge  
–  like find + add 



Implicit representation 

•  Don’t store graph at all 
•  Implement function Adj(u) that returns list 

of neighbors or edges of u 
•  Requires no space, use it as you need it 
•  And may be very efficient 
•  e.g., Rubik’s cube 



Searching Graph 

•  We want to get from current Rubik state to 
“solved” state 

•  How do we explore? 



Breadth First Search 
•  start with vertex v 
•  list all its neighbors (distance 1) 
•  then all their neighbors (distance 2) 
•  etc. 

•  algorithm starting at s: 
– define frontier F 
–  initially F={s}  
–  repeat F=all neighbors of vertices in F 
– until all vertices found 

. . .

frontier

s



Depth First Search 
•  Like exploring a maze 
•  From current vertex, move to another 
•  Until you get stuck 
•  Then backtrack till you find a new place to 

explore 

•  e.g “left-hand” rule 

s



Problem: Cycles 

•  What happens if unknowingly revisit a 
vertex? 

•  BFS: get wrong notion of distance 
•  DFS: go in circles 
•  Solution: mark vertices 

– BFS: if you’ve seen it before, ignore 
– DFS: if you’ve seen it before, back up 



Conclude 

•  Graphs: fundamental data structure 
– Directed and undirected 

•  4 possible representations 
•  Basic methods of graph search 

•  Next time: 
– Formalize BFS and DFS 
– Runtime analysis 
– Applications 


