
6.006- Introduction to Algorithms

Lecture 11
Prof. Patrick Jaillet

Lecture Overview

 Searching I: Graph Search and
Representations

Readings: CLRS 22.1-22.3, B.4

Graphs

•  G=(V,E)
•  V a set of vertices

–  usually number denoted by n
•  E ⊆ V × V a set of edges (pairs of vertices)

–  usually number denoted by m
–  note m < n(n-1) = O(n2)

•  Flavors:
–  pay attention to order: directed graph
–  ignore order: undirected graph

• Then only n(n-1)/2 possible edges

Examples

•  Undirected
•  V={a,b,c,d}
•  E={{a,b}, {a,c}, {b,c},

{b,d}, {c,d}}

•  Directed
•  V = {a,b,c}
•  E = {(a,c), (a,b) (b,c),

(c,b)}

a

c d

b
a

b c

Instances/Applications

•  Web
–  crawling

•  Social Network
–  friend finder

•  Computer Networks
–  internet routing
–  connectivity

•  Game states
–  rubik’s cube, chess

Pocket Cube

•  2 × 2 × 2 Rubik’s cube
•  Start with any colors
•  Moves are quarter

turns of any face
•  “Solve” by making

each side one color

Configuration Graph

•  One vertex for each state
•  One edge for each move from a vertex

– 6 faces to twist
– 3 nontrivial ways to twist (1/4, 2/4, 3/4)
– So, 18 edges out of each state

•  Solve cube by finding a path (of moves)
from initial state (vertex) to “solved” state

Combinatorics

•  State for each arrangement and orientation of 8
cubelets
– 8 cubelets in each position: 8! Possibilities
– Each cube has 3 orientations: 38 Possibilities
– Total: 8! × 38= 264,539,320 vertices

•  But divide out 24 orientations of whole cube
•  And there are three separate connected

components (twist one cube out of place 3
ways)

•  Result: 3,674,160 states to search

GeoGRAPHy
•  One start vertex
•  6 others reachable by

one 90° turn
•  From those, 27 others

by another
•  And so on

distance 90° 90° and 180°
0 1 1
1 6 9
2 27 54
3 120 321
4 534 1847
5 2,256 9,992
6 8,969 50,136
7 33,058 227,526
8 114,149 870,072
9 360,508 1,887,748
10 930,588 623,800
11 1,350,852 2,644
12 782,536
13 90,280
14 276

diameter

Representation

•  To solve graph problems, must examine graph
•  So need to represent in computer
•  Four representations with pros/cons

– Adjacency lists (of neighbors of each vertex)
–  Incidence lists (of edges from each vertex)
– Adjacency matrix (of which pairs are adjacent)
–  Implicit representation (as neighbor function)

Adjacency List

•  For each vertex v, list its neighbors (vertices to
which it is connected by an edge)
– Array A of || V || linked lists
– For v∈V, list A[v] stores neighbors {u | (v,u) ∈

E}
– Directed graph only stores outgoing neighbors
– Undirected graph stores edge in two places

•  In python, A[v] can be hash table
–  v any hashable object

Example

a

b c

a

b

c

c

c /

b /

b /

(Object Oriented Variants)

•  object for each vertex u
–  u.neighbors is list of neighbors for u

•  incidence list: object for each edge e
–  u.edges = list of outgoing edges from u
–  e object has endpoints e.head and e.tail

•  can store additional info per vertex or edge
without hashing

e.a e.be

Adjacency Matrix

•  assume V={1, …, n}
•  matrix A=(aij) is n × n

– row i, column j
– aij = 1 if (i,j) ∈ E
– aij = 0 otherwise

•  (store as, e.g., array of arrays)

Example

1 2 3

0 1 1 1

0 0 1 2

0 1 0 3

1

2 3

Graph Algebra

•  can treat adjacency matrix as matrix
•  e.g., A2 = length-2 paths between vertices ..
•  [note: A∞ gives pagerank of vertices..]
•  undirected graph symmetric matrix
•  [eigenvalues useful for many things, but---

rarely used in graph algorithms]

Tradeoff: Space

•  Adjacency lists use one list node per edge
– And two machine words per node
–  So space is Θ(mw) bits (m=#edges, w=word size)

•  Adjacency matrix uses n2 entries
– But each entry can be just one bit
–  So Θ(n2) bits

•  Matrix better only for very dense graphs
– m near n2

–  (Google can’t use matrix)

Tradeoff: Time

•  Add edge
–  both data structures are O(1)

•  Check “is there an edge from u to v”?
– matrix is O(1)
–  adjacency list must be scanned

•  Visit all neighbors of v (very common)
–  adjacency list is Ο(neighbors)
– matrix is Θ(n)

•  Remove edge
–  like find + add

Implicit representation

•  Don’t store graph at all
•  Implement function Adj(u) that returns list

of neighbors or edges of u
•  Requires no space, use it as you need it
•  And may be very efficient
•  e.g., Rubik’s cube

Searching Graph

•  We want to get from current Rubik state to
“solved” state

•  How do we explore?

Breadth First Search
•  start with vertex v
•  list all its neighbors (distance 1)
•  then all their neighbors (distance 2)
•  etc.

•  algorithm starting at s:
– define frontier F
–  initially F={s}
–  repeat F=all neighbors of vertices in F
– until all vertices found

. . .

frontier

s

Depth First Search
•  Like exploring a maze
•  From current vertex, move to another
•  Until you get stuck
•  Then backtrack till you find a new place to

explore

•  e.g “left-hand” rule

s

Problem: Cycles

•  What happens if unknowingly revisit a
vertex?

•  BFS: get wrong notion of distance
•  DFS: go in circles
•  Solution: mark vertices

– BFS: if you’ve seen it before, ignore
– DFS: if you’ve seen it before, back up

Conclude

•  Graphs: fundamental data structure
– Directed and undirected

•  4 possible representations
•  Basic methods of graph search

•  Next time:
– Formalize BFS and DFS
– Runtime analysis
– Applications

