6.006- Introduction to Algorithms

Lecture 11
Prof. Patrick Jaillet



Lecture Overview

Searching I: Graph Search and
Representations

Readings: CLRS 22.1-22.3, B.4



Graphs

G=(V.,E)
V a set of vertices
— usually number denoted by n
E C V x V a set of edges (pairs of vertices)
— usually number denoted by m
— note m < n(n-1) = O(n?)
* Flavors:
— pay attention to order: directed graph
— 1gnore order: undirected graph
e Then only n(n-1)/2 possible edges



Examples

 Undirected
« V={ab,c,d}

* E=iia,b}, 1a,cj, {b,cj,

1b,d}, {c,dj}

e Directed
- V={ab,c}
* E={(a,c), (a,b) (b,c),

(c.b)}
O



Instances/Applications

« Web
— crawling

* Social Network
— friend finder

Computer Networks
— 1nternet routing

— connectivity

Game states
— rubik’s cube, chess



Pocket Cube

2 x 2 x 2 Rubik’s cube
Start with any colors

Moves are quarter
turns of any face

“Solve” by making
each side one color



Configuration Graph

 One vertex for each state

One edge for each move from a vertex

— 6 faces to twist

— 3 nontrivial ways to twist (1/4, 2/4, 3/4)
—So, 18 edges out of each state

* Solve cube by finding a path (of moves)
from 1nitial state (vertex) to “solved” state



Combinatorics

 State for each arrangement and orientation of 8
cubelets

— 8 cubelets 1n each position: 8! Possibilities
— Each cube has 3 orientations: 32 Possibilities
— Total: 8! x 3%=264,539,320 vertices

* But divide out 24 orientations of whole cube

* And there are three separate connected
components (twist one cube out of place 3
ways)

* Result: 3,674,160 states to search



GeoGRAPHY

One start vertex

6 others reachable by
one 90° turn

From those, 27 others
by another

And so on

O 0 3 O D B~ W D = O

Y VU W G G U w—y
A W NN = O

1

6 9

27 54

120 321

534 1847
2,256 9,992
8,969 50,136
33,058 227,526
114,149 870,072
360,508 1,887,748
930,588 623,800

1,350,852 2,644
782,536
90,280

276
- diameter



Representation

* To solve graph problems, must examine graph

* So need to represent 1n computer

* Four representations with pros/cons
— Adjacency lists (of neighbors of each vertex)
— Incidence lists (of edges from each vertex)
— Adjacency matrix (of which pairs are adjacent)
— Implicit representation (as neighbor function)



Adjacency List

* For each vertex v, list its neighbors (vertices to
which 1t 1s connected by an edge)

— Array A of V| linked lists

— For v&V, list A[v] stores neighbors {u | (v,u) €
Ej

— Directed graph only stores outgoing neighbors
— Undirected graph stores edge in two places

* In python, A[v] can be hash table
— v any hashable object



Example

0 e bl

il
v
o
—

|




(Object Oriented Variants)

* object for each vertex u

— u.neighbors 1s list of neighbors for u
 1ncidence list: object for each edge e

— u.edges = list of outgoing edges from u
— ¢ object has endpoints e¢.head and e.tail

O—0)

e.a e e.b

* can store additional info per vertex or edge
without hashing



Adjacency Matrix

e assume V={1, ..., n}
* matrix A=(a;) 1Isn x n
—1ow 1, column |
—a; = 11f (1)) €E
—a;; = 0 otherwise

* (store as, e.g., array of arrays)



Example



Graph Algebra

* can treat adjacency matrix as matrix
 e.g., A? = length-2 paths between vertices ..
» [note: A® gives pagerank of vertices.. |
 undirected graph = symmetric matrix

* [eigenvalues useful for many things, but---
rarely used in graph algorithms]



Tradeott: Space

* Adjacency lists use one list node per edge

— And two machine words per node

— So space 1s O(mw) bits (m=#edges, w=word size)
« Adjacency matrix uses n’ entries

— But each entry can be just one bit

— So ©(n?) bits
e Matrix better only for very dense graphs

— m near n?

— (Google can’t use matrix)



Tradeoff: Time

Add edge
— both data structures are O(1)
Check “is there an edge from u to v’?
— matrix 1s O(1)
— adjacency list must be scanned
Visit all neighbors of v (very common)
— adjacency list 1s O(neighbors)
— matrix 1s O(n)
Remove edge
— like find + add



Implicit representation

* Don’t store graph at all

* Implement function Adj(u) that returns list
of neighbors or edges of u

* Requires no space, use 1t as you need 1t
* And may be very efficient
* ¢.g., Rubik’s cube



Searching Graph

 We want to get from current Rubik state to
“solved” state

* How do we explore?



Breadth First Search

* start with vertex v
* list all 1its neighbors (distance 1)
* then all their neighbors (distance 2)

* eftc. —
Ao =0
S %Q o ~5
e algorithm starting at s: T g
— define frontier F ”\gé

— mitially F={s} frontier
— repeat F=all neighbors of vertices in F
—until all vertices found



Depth First Search

» Like exploring a maze
* From current vertex, move to another
e Until you get stuck

« Then backtrack till you find a new place to
explore

¢.g “left-hand” rule 5 r
]l ’J'

a




Problem: Cycles

What happens if unknowingly revisit a
vertex?

BFS: get wrong notion of distance
DFS: go 1n circles

Solution: mark vertices

— BFS: 1f you’ve seen 1t before, 1gnore

— DFS: if you’ve seen 1t before, back up



Conclude

Graphs: fundamental data structure
— Directed and undirected

4 possible representations

Basic methods of graph search

Next time:
— Formalize BFS and DFS
— Runtime analysis
— Applications



