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Menu 

•  New technique: Dynamic Programming  
  Computing Fibonacci numbers – Warmup 
  “Definition” of DP 
  Crazy Eights Puzzle 



Fibonacci Numbers 

•  Fibonacci sequence:  
  F0=0 , F1=1  
  Fn=Fn-1+Fn-2  

•  How fast does Fn grow ?      
  Fn=Fn-1+ Fn-2 ≥ 2 Fn-2     ⇒ Fn= 2Ω(n)  

• How quickly can we compute Fn?     
(time measured in arithmetic operations) 



Fn=Fn-1+Fn-2 

•  Algorithm I: recursion         
naive_fibo(n):             

if n=0: return 0             
else if n=1: return 1            
else:  

 return naive_fibo(n-1) + naive_fibo(n-2)  

• Time ?   
• Better algorithm ? 

O(Fn) 



Fn=Fn-1+Fn-2 

•  Algorithm II: memoization        
memo = { }        
fibo(i):            

if i in memo: return memo[i]            
else if i=0: return 0            
else if i=1: return 1            
else:                

f = fibo(i-1) + fibo(i-2)               
memo[i]=f                
return f 

return fibo(n) 
•  Time?  O(n) 

- in the whole recursive execution, I 
will only go beyond this point, n times  

(since every time I do this, I fill 
in another slot in memo[] ) 

- hence, all other calls to fibo( ) act as 
reading an entry of an array 



Dynamic Programming 

•  DP ≈ Recursion + Memoization 
•  DP works when: 

  the solution can be produced by combining solutions of 
subproblems;  

  the solution of each subproblem can be produced by 
combining solutions of sub-subproblems, etc;  

moreover…. 
  the total number of subproblems arising recursively is 

polynomial.  

Fn=Fn-1+Fn-2 

Fn-1=Fn-2+Fn-3 Fn-2=Fn-3+Fn-4 

F1, F2,…, Fn 



Fn=Fn-1+Fn-2 

F1, F2,…, Fn 

Dynamic Programming 

•  DP ≈ Recursion + Memoization 
•  DP works when: 

  the solution can be produced by combining solutions of 
subproblems;  

  the solution of each subproblem can be produced by 
combining solutions of sub-subproblems, etc;  

moreover…. 
  the total number of subproblems arising recursively is 

polynomial.  

Optimal substructure  
The solution to a problem can be obtained by 

solutions to subproblems. 

Overlapping Subproblems 
A recursive solution contains a “small” number of 

distinct subproblems (repeated many times) 

Fn=Fn-1+Fn-2 

F1, F2,…, Fn 



Crazy 8s 
•  Input: a sequence of cards c[0]…c[n-1].   
•  E.g., 7♣ 7♥ K♣ K♠ 8♥ …  
•  Goal: find the longest “trick subsequence” c[i1]…c[ik], 

where i1 < i2 <…< ik. 
•  For it to be a trick subsequence, it must be that:  

 ∀ j, c[ij] and c[ij+1] “match” i.e.  
  they either have the same rank,  
  or the same suit  
  or one of them is an 8  
  in this case, we write: c[ij] ~ c[ij+1] 

•  E.g., 7♣ K♣ K♠ 8♥ is the longest such subsequence  
in the above example 



Algorithm 

•  Let trick(i) be the length of the longest trick 
subsequence that starts at card c[i] 

•  Question: How can I relate value of trick(i) with 
the values of trick(i+1),…,trick(n)? 

•  Recursive formula:      
   trick(i) = 1+ maxj>i, c[i] ~ c[j] trick(j)   

•  Maximum trick length:  
    maxi trick(i) 



Implementations 

•  memo = { }  
•  trick(i):      

  if i in memo: return memo[i]      
  else if i=n-1: return 1             
  else                  

•  f := 1+maxj>i, c[i] ~ c[j] trick(j) 
• memo[i] := f                  
•  return f       

•  call trick(0)       
•  return maximum value in memo 

Recursive 



Implementations (cont.) 

memo = { }  
for i=n-1 downto 0 
    memo[i]= 1+maxj>i, c[i] ~ c[j] memo[j]  
return maximum value in memo  

Iterative 

Runtime: O(n2) 



Dynamic Programming 

•  DP ≈ Recursion + Memoization 
•  DP works when: 

  the solution can be produced by combining solutions of 
subproblems;  

  the solution of each subproblem can be produced by 
combining solutions of sub-subproblems, etc;  

moreover…. 
  the total number of subproblems arising recursively is 

polynomial.  

Optimal substructure  
An solution to a problem can be obtained by 

solutions to subproblems. 

Overlapping Subproblems 
A recursive solution contains a “small” number of 

distinct subproblems (repeated many times) 
trick(0), trick(1),…, trick(n-1) 

trick(i) = 1+ maxj>i, c[i] ~ c[j] trick(j)   



Menu 

•  New technique: Dynamic Programming  
  Computing Fibonacci numbers – Warmup 
  “Definition” of DP 
  Crazy Eights Puzzle 
 Next Time: all-pairs shortest paths 



All-pairs shortest paths 

•  Input: Digraph G = (V, E), where |V | = n, with 
edge-weight function w : E → R.  

•  Output: n × n matrix of shortest-path lengths δ(i, j) 
for all i, j ∈ V. 

Assumption: No negative-weight cycles 



Dynamic Programming Approach 

•  Consider the n × n matrix A = (aij), where aij=w(i,j) 
if (i,j) ∈ E, and define  
  dij

(m) = 

Claim: We have   
dij

(0) = 0, if i = j, and ∞, if i ≠ j;  
and for m = 1, 2, …, n–1,  

  dij
(m) = mink{dik

(m–1) + akj }.  

weight of a shortest path from i to j that 
uses at most m edges 



Proof of Claim 

…
 

≤ m‐1 edge
s 

≤ m‐1 edges i j 

k’s 
dij

(m) = mink{dik
(m–1) + akj }  

for k ← 1 to n  
if dij > dik + akj  

dij ← dik + akj 

Relaxation 



Dynamic Programming Approach 

•  Consider the n × n matrix A = (aij), where aij=w(i,j) 
if (i,j) ∈ E, and define  
  dij

(m) = 

Claim: We have   
dij

(0) = 0, if i = j, and ∞, if i ≠ j;  
and for m = 1, 2, …, n–1,  

  dij
(m) = mink{dik

(m–1) + akj }.  
Time? O(n4) - similar to n runs of Bellman-Ford 

weight of a shortest path from i to j that 
uses at most m edges 


