
6.006- Introduction to
Algorithms

Lecture 18
Prof. Constantinos Daskalakis

CLRS 15

Menu

•  New technique: Dynamic Programming
  Computing Fibonacci numbers – Warmup
  “Definition” of DP
  Crazy Eights Puzzle

Fibonacci Numbers

•  Fibonacci sequence:
  F0=0 , F1=1
  Fn=Fn-1+Fn-2

•  How fast does Fn grow ?
  Fn=Fn-1+ Fn-2 ≥ 2 Fn-2 ⇒ Fn= 2Ω(n)

• How quickly can we compute Fn?
(time measured in arithmetic operations)

Fn=Fn-1+Fn-2

•  Algorithm I: recursion
naive_fibo(n):

if n=0: return 0
else if n=1: return 1
else:

 return naive_fibo(n-1) + naive_fibo(n-2)

• Time ?
• Better algorithm ?

O(Fn) 

Fn=Fn-1+Fn-2

•  Algorithm II: memoization
memo = { }
fibo(i):

if i in memo: return memo[i]
else if i=0: return 0
else if i=1: return 1
else:

f = fibo(i-1) + fibo(i-2)
memo[i]=f
return f

return fibo(n)
•  Time? O(n) 

- in the whole recursive execution, I
will only go beyond this point, n times

(since every time I do this, I fill
in another slot in memo[])

- hence, all other calls to fibo() act as
reading an entry of an array

Dynamic Programming

•  DP ≈ Recursion + Memoization
•  DP works when:

  the solution can be produced by combining solutions of
subproblems;

  the solution of each subproblem can be produced by
combining solutions of sub-subproblems, etc;

moreover….
  the total number of subproblems arising recursively is

polynomial.

Fn=Fn-1+Fn-2

Fn-1=Fn-2+Fn-3 Fn-2=Fn-3+Fn-4

F1, F2,…, Fn

Fn=Fn-1+Fn-2

F1, F2,…, Fn

Dynamic Programming

•  DP ≈ Recursion + Memoization
•  DP works when:

  the solution can be produced by combining solutions of
subproblems;

  the solution of each subproblem can be produced by
combining solutions of sub-subproblems, etc;

moreover….
  the total number of subproblems arising recursively is

polynomial.

Optimal substructure
The solution to a problem can be obtained by

solutions to subproblems.

Overlapping Subproblems
A recursive solution contains a “small” number of

distinct subproblems (repeated many times)

Fn=Fn-1+Fn-2

F1, F2,…, Fn

Crazy 8s
•  Input: a sequence of cards c[0]…c[n-1].
•  E.g., 7♣ 7♥ K♣ K♠ 8♥ …
•  Goal: find the longest “trick subsequence” c[i1]…c[ik],

where i1 < i2 <…< ik.
•  For it to be a trick subsequence, it must be that:

 ∀ j, c[ij] and c[ij+1] “match” i.e.
  they either have the same rank,
  or the same suit
  or one of them is an 8
  in this case, we write: c[ij] ~ c[ij+1]

•  E.g., 7♣ K♣ K♠ 8♥ is the longest such subsequence
in the above example

Algorithm

•  Let trick(i) be the length of the longest trick
subsequence that starts at card c[i]

•  Question: How can I relate value of trick(i) with
the values of trick(i+1),…,trick(n)?

•  Recursive formula:
 trick(i) = 1+ maxj>i, c[i] ~ c[j] trick(j)

•  Maximum trick length:
 maxi trick(i)

Implementations

•  memo = { }
•  trick(i):

  if i in memo: return memo[i]
  else if i=n-1: return 1
  else

•  f := 1+maxj>i, c[i] ~ c[j] trick(j)
• memo[i] := f
•  return f

•  call trick(0)
•  return maximum value in memo

Recursive

Implementations (cont.)

memo = { }
for i=n-1 downto 0
 memo[i]= 1+maxj>i, c[i] ~ c[j] memo[j]
return maximum value in memo

Iterative

Runtime: O(n2)

Dynamic Programming

•  DP ≈ Recursion + Memoization
•  DP works when:

  the solution can be produced by combining solutions of
subproblems;

  the solution of each subproblem can be produced by
combining solutions of sub-subproblems, etc;

moreover….
  the total number of subproblems arising recursively is

polynomial.

Optimal substructure
An solution to a problem can be obtained by

solutions to subproblems.

Overlapping Subproblems
A recursive solution contains a “small” number of

distinct subproblems (repeated many times)
trick(0), trick(1),…, trick(n-1)

trick(i) = 1+ maxj>i, c[i] ~ c[j] trick(j)

Menu

•  New technique: Dynamic Programming
  Computing Fibonacci numbers – Warmup
  “Definition” of DP
  Crazy Eights Puzzle
 Next Time: all-pairs shortest paths

All-pairs shortest paths

•  Input: Digraph G = (V, E), where |V | = n, with
edge-weight function w : E → R.

•  Output: n × n matrix of shortest-path lengths δ(i, j)
for all i, j ∈ V.

Assumption: No negative-weight cycles

Dynamic Programming Approach

•  Consider the n × n matrix A = (aij), where aij=w(i,j)
if (i,j) ∈ E, and define
  dij

(m) =

Claim: We have
dij

(0) = 0, if i = j, and ∞, if i ≠ j;
and for m = 1, 2, …, n–1,

 dij
(m) = mink{dik

(m–1) + akj }.

weight of a shortest path from i to j that
uses at most m edges 

Proof of Claim

…
 

≤ m‐1 edge
s 

≤ m‐1 edges i j

k’s
dij

(m) = mink{dik
(m–1) + akj }

for k ← 1 to n
if dij > dik + akj

dij ← dik + akj

Relaxation

Dynamic Programming Approach

•  Consider the n × n matrix A = (aij), where aij=w(i,j)
if (i,j) ∈ E, and define
  dij

(m) =

Claim: We have
dij

(0) = 0, if i = j, and ∞, if i ≠ j;
and for m = 1, 2, …, n–1,

 dij
(m) = mink{dik

(m–1) + akj }.
Time? O(n4) - similar to n runs of Bellman-Ford

weight of a shortest path from i to j that
uses at most m edges 

