6.006- Introduction to Algorithms

Lecture 18

Prof. Constantinos Daskalakis CLRS 15

Menu

- New technique: Dynamic Programming
 - Computing Fibonacci numbers Warmup
 - "Definition" of DP
 - Crazy Eights Puzzle

Fibonacci Numbers

- Fibonacci sequence:
 - $F_0 = 0$, $F_1 = 1$
 - $F_n = F_{n-1} + F_{n-2}$
- How fast does Fn grow ?
 - $F_n = F_{n-1} + F_{n-2} \ge 2 F_{n-2} \implies F_n = 2^{\Omega(n)}$
- How quickly can we compute F_n?
 (time measured in arithmetic operations)

$\mathbf{F}_{n} = \mathbf{F}_{n-1} + \mathbf{F}_{n-2}$

- Algorithm I: recursion

 naive_fibo(n):
 if n=0: return 0
 else if n=1: return 1
 else:
 return naive fibo(n-1) + naive fibo(n-2)
- Time ? $O(F_n)$
- Better algorithm ?

$\mathbf{F}_{n} = \mathbf{F}_{n-1} + \mathbf{F}_{n-2}$

- Algorithm II: memoization memo = $\{ \}$ fibo(*i*): if *i* in memo: return memo[*i*] else if *i*=0: return 0 else if *i*=1: return 1 else: f = fibo(i-1) + fibo(i-2)memo[i]=freturn f return fibo(*n*)
- Time? O(n)

•

in the whole recursive execution, I will only go beyond this point, n times (since every time I do this, I fill in another slot in memo[])

- hence, all other calls to fibo() act as reading an entry of an array

Dynamic Programming

- $DP \approx Recursion + Memoization$
- DP works when:
 - the solution can be produced by combining solutions of subproblems; F_n=F_{n-1}+F_{n-2}
 - the solution of each subproblem can be produced by combining solutions of sub-subproblems, etc; moreover.... $F_{n-1}=F_{n-2}+F_{n-3}$ $F_{n-2}=F_{n-3}+F_{n-4}$
 - the total number of subproblems arising recursively is polynomial. $F_1, F_2, ..., F_n$

Dynamic Programming

- $DP \approx Recursion + Memoization$
- DP works when:

Optimal substructure The solution to a problem can be obtained by solutions to subproblems. $F_n = F_{n-1} + F_{n-2}$

moreover....

Overlapping Subproblems

A recursive solution contains a "small" number of distinct subproblems (repeated many times)

 $F_1, F_2, ..., F_n$

Crazy 8s

- Input: a sequence of cards c[0]...c[n-1].
- E.g., 7♣ 7♥ K♣ K♠ 8♥ ...
- **Goal:** find the longest "trick subsequence" $c[i_1]...c[i_k]$, where $i_1 < i_2 < ... < i_k$.
- For it to be a trick subsequence, it must be that:
 - $\forall j, c[i_j]$ and $c[i_{j+1}]$ "match" i.e.
 - they either have the same rank,
 - or the same suit
 - or one of them is an 8
 - in this case, we write: $c[i_j] \sim c[i_{j+1}]$
- E.g., 7♣ K♣ K♠ 8♥ is the longest such subsequence in the above example

Algorithm

- Let trick(*i*) be the length of the longest trick subsequence that starts at card c[*i*]
- **Question:** How can I relate value of trick(*i*) with the values of trick(*i*+1),...,trick(*n*)?
- Recursive formula:

 $trick(i) = 1 + \max_{j > i, c[i] \sim c[j]} trick(j)$

• Maximum trick length:

 $\max_{i} \operatorname{trick}(i)$

Implementations

Recursive

- memo = { }
- trick(*i*):
 - if *i* in memo: return memo[*i*]
 - else if i=n-1: return 1
 - else
 - $f := 1 + \max_{j \ge i, c[i] \sim c[j]} \operatorname{trick}(j)$
 - memo[i] := f
 - return f
- call trick(0)
- return maximum value in memo

Implementations (cont.)

Iterative

memo = { } for *i*=*n*-1 downto 0 memo[*i*]= 1+max_{*j*>*i*, c[*i*] ~ c[*j*]} memo[*j*] return maximum value in memo

Runtime: $O(n^2)$

Dynamic Programming

- $DP \approx Recursion + Memoization$
- DP works when:

Optimal substructure

An solution to a problem can be obtained by solutions to subproblems.

 $trick(i) = 1 + \max_{j > i, c[i] \sim c[j]} trick(j)$

moreover....

Overlapping Subproblems

A recursive solution contains a "small" number of distinct subproblems (repeated many times)

trick(0), trick(1),..., trick(*n*-1)

Menu

- New technique: Dynamic Programming
 - Computing Fibonacci numbers Warmup
 - "Definition" of DP
 - Crazy Eights Puzzle
 - Next Time: all-pairs shortest paths

All-pairs shortest paths

- Input: Digraph G = (V, E), where |V| = n, with edge-weight function $w : E \to R$.
- Output: $n \times n$ matrix of shortest-path lengths $\delta(i, j)$ for all $i, j \in V$.

Assumption: No negative-weight cycles

Dynamic Programming Approach

- Consider the $n \times n$ matrix $A = (a_{ij})$, where $a_{ij} = w(i,j)$ if $(i,j) \in E$, and define
 - d_{ij}^(m) = weight of a shortest path from *i* to *j* that uses <u>at most</u> *m* edges

Claim: We have

 $d_{ii}^{(0)} = 0$, if i = j, and ∞ , if $i \neq j$;

and for m = 1, 2, ..., n-1,

$$d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj} \}.$$

Proof of Claim

Relaxation

Dynamic Programming Approach

- Consider the $n \times n$ matrix $A = (a_{ij})$, where $a_{ij} = w(i,j)$ if $(i,j) \in E$, and define
 - d_{ij}^(m) = weight of a shortest path from *i* to *j* that uses <u>at most</u> *m* edges

Claim: We have

 $d_{ii}^{(0)} = 0$, if i = j, and ∞ , if $i \neq j$;

and for m = 1, 2, ..., n-1,

$$d_{ij}^{(m)} = \min_k \{ d_{ik}^{(m-1)} + a_{kj} \}.$$

Time? $O(n^4)$ - similar to *n* runs of Bellman-Ford