6.006- Introduction to
Algortthms

HHHHHHHHHHHHHHH
EEEEEEEEEEEEEEEEE

RRRRRRRRRRRRRR

Lecture 18

Prof. Constantinos Daskalakis
CLRS 15

Menu

* New technique: Dynamic Programming

= Computing Fibonacci numbers — Warmup
= “Definition” of DP
* Crazy Eights Puzzle

Fibonacci Numbers

* Fibonacci sequence:
" F,=0, F,=1
" b=kt
* How fast does Fn grow ?
"F=F, tF,=2F,, =F=2%"
* How quickly can we compute F,?
(ttme measured 1n arithmetic operations)

Fn=Fn-1+Fn-2

* Algorithm I: recursion
naive fibo(n):
1f n=0: return 0
else if n=1: return 1

else:
return naive fibo(n-1) + naive fibo(n-2)

* Time ? O(F,)
 Better algorithm ?

Fn=Fn-1+Fn-2

* Algorithm II: memoization
memo = { }

fibo(i):

if 7 in memo: return memo|i]

else 1f i=0: return 0
else if i=1: return 1

else:

f= fibo(i-1) + fibo(i-2)
memo|[i]=f
return f

return fibo(n)

* Time? O(n)

$

- in the whole recursive execution, [
will only go beyond this point, n times

(since every time I do this, I fill
in another slot in memo[])

- hence, all other calls to fibo() act as
reading an entry of an array

Dynamic Programming

e DP = Recursion + Memoization
* DP works when:

» the solution can be produced by combining solutions of
subproblems; F =F +F

= the solution of each subproblem can be produced by

combining solutions of sub-subproblems, etc;

morcover.... Fn—] :Fn-2+Fn-3 Fn-ZZFn-3+Fn-4

» the total number of subproblems arising recursively i1s

polynomial. F.F,. .F

Dynamic Programming

e DP = Recursion + Memoization
e DP works when:

Optimal substructure
The solution to a problem can be obtained by

solutions to subproblems. F=F +F ,

moreover.. ..
Overlapping Subproblems

A recursive solution contains a “small” number of

distinct subproblems (repeated many times)
F,,F,...,F,

Crazy 8s

Input: a sequence of cards c[0]...c[n-1].
E.g., 7% 79 K& K& 89 .
Goal: find the longest “trick subsequence” c|i,]...c[7,],
where /| <1, <... <,
For 1t to be a trick subsequence, 1t must be that:
V j, cli] and c[i;,, | “match” i.e.
» they either have the same rank,
= or the same suit
= or one of them 1s an &
" in this case, we write: c[/| ~c[/,.]
E.g., 7d K& K& 8% 1s the longest such subsequence
in the above example

Algorithm

Let trick(7) be the length of the longest trick
subsequence that starts at card c|]

Question: How can I relate value of trick(7) with
the values of trick(i+1),....trick(n)?

Recursive formula:
trick(?) = 1+ max;.; ;- . trick(y)
Maximum trick length:

max; trick(7)

Implementations

Recursive

* memo = { }
. trick(i):
" 1f { iIn memo: return memol]
» ¢lse 1f i=n-1: return 1
" clse
* /= 1Hmax,,; - g trick())
* memo[i] :=f
* return f

* call trick(0)
e return maximum value in memo

Implementations (cont.)

Iterative

memo = { }
for i=n-1 downto 0
memo[i]= 1+max..; .

return maximum value i1n memo

|~ c[j] MEMO /]

Runtime: O(n?)

Dynamic Programming

e DP = Recursion + Memoization

e DP works when:

Optimal substructure
An solution to a problem can be obtained by

solutions to subproblems.
trick(i) = 1+ max..; .y - iy trick(j)

moreover.. ..
Overlapping Subproblems

A recursive solution contains a “small” number of
distinct subproblems (repeated many times)

trick(0), trick(1),..., trick(n-1)

Menu

* New technique: Dynamic Programming
= Computing Fibonacci numbers — Warmup
" “Definition” of DP
* Crazy Eights Puzzle
* Next Time: all-pairs shortest paths

All-pairs shortest paths

* Input: Digraph G = (V, E), where |}/ | = n, with
edge-weight function w : £ — R.

* Qutput: n ¥ n matrix of shortest-path lengths o(, /)
foralli,; € V.

Assumption: No negative-weight cycles

Dynamic Programming Approach

e Consider the 7 x n» matrix 4 = (al-j), where aij:W(,j)
if (1,j) € E, and define

= d, "= weight of a shortest path from 7 to / that
uses at most 72 edges

Claim: We have
d,=0,if i =j, and oo, if i # J;
and form=1,2, ..., n—1,

d, = min, {d, "D +a,, }.

Proof of Claim

fork<— 1ton
ifdl.j>dik+akj

dl-j<—dik+akj

Relaxation

Dynamic Programming Approach

e Consider the 7 x n» matrix 4 = (al-j), where aij:W(,j)
if (1,j) € E, and define

= d, "= weight of a shortest path from 7 to / that
uses at most 72 edges

Claim: We have
d, 0 =0,ifi =, and oo, if i # ;
and form=1,2, ..., n—1,
dl-j(m) =min, {d, "D + & }.

Time? O(n*) - similar to #» runs of Bellman-Ford

