6.006 - Introduction to Algorithms

Lecture 13

Prof. Constantinos Daskalakis

CLRS 22.4-22.5
Graphs

- $G=(V,E)$
- V a set of vertices
 - Usually number denoted by n
- $E \subseteq V \times V$ a set of edges (pairs of vertices)
 - Usually number denoted by m
- Flavors:
 - Pay attention to order of vertices in edge: *directed* graph
 - Ignore order: *undirected* graph
Examples

- **Undirected**
 - $V = \{a, b, c, d\}$
 - $E = \{\{a, b\}, \{a, c\}, \{b, c\}, \{b, d\}, \{c, d\}\}$

- **Directed**
 - $V = \{a, b, c\}$
 - $E = \{(a, c), (a, b), (b, c), (c, b)\}$

![Graph](attachment:image.png)
Breadth First Search

- Start with vertex v
- List all its neighbors (distance 1)
- Then all their neighbors (distance 2)
- Etc.
Depth First Search

• Exploring a maze
• From current vertex, move to another
• Until you get stuck
• Then backtrack till you find the first new possibility for exploration
BFS/DFS Algorithm Summary

• Maintain “todo list” of vertices to be scanned

• Until list is empty
 ▪ Take a vertex v from front of list
 ▪ Mark it scanned
 ▪ Examine all outgoing edges (v,u)
 ▪ If u not marked, add to the todo list
 • BFS: add to end of todo list (queue: FIFO)
 • DFS: add to front of todo list (recursion stack: LIFO)
Queues and Stacks

- BFS queue is explicit
 - Created in pieces
 - (level 0 vertices) . (level 1 vertices) . (level 2 vert…
 - the frontier at iteration i is piece i of vertices in queue
- DFS stack is implicit
 - It’s the call stack of the python interpreter
 - From v, recurse on one child at a time
 - But same order if put all children on stack, then pull off (and recurse) one at a time
Runtime Summary

- Each vertex scanned once
 - When scanned, marked
 - If marked, not (re)added to todo list
 - Constant work per vertex
 - Removing from queue
 - Marking
 - $O(n)$ total
- Each edge scanned once
 - When tail vertex of edge is scanned
 - Constant work per edge (checking mark on head)
 - $O(m)$ total
- In all, $O(n+m)$
Connected Components
Connected Components

- Undirected graph $G=(V,E)$
- Two vertices are connected if there is a path between them
- An equivalence relation
- Equivalence classes are called components
 - A set of vertices all connected to each other
Algorithm

- DFS/BFS reaches all vertices reachable from starting vertex s
- i.e., component of s
- Mark all those vertices as “owned by” s
Algorithm

• DFS-visit (u, owner, o)
 #mark all nodes reachable from u with owner o
 for v in Adj[u]
 if v not in owner #not yet seen
 owner[v] = o #instead of parent
 DFS-visit (v, owner, o)

• DFS-Visit(s, owner, s) will mark owner[v]=s for any vertex reachable from s
Algorithm

• Find component for s by DFS from s
• So, just search from every vertex to find all components
• Vertices in same component will receive the same ownership labels
• Cost?
 ▪ n times BFS/DFS?
 ▪ i.e., O(n(m+n))?
Better Algorithm

- If vertex has already been reached, don’t need to search from it!
 - Its connected component already marked with owner
- \(owner = \{\} \)

 for s in V
 - if not(s in owner)
 - DFS-Visit(s, owner, s) #or can use BFS
- Now every vertex examined exactly twice
 - Once in outer loop and once in DFS-Visit
- And every edge examined once
 - In DFS-Visit when its tail vertex is examined
- Total runtime to find components is \(O(m+n) \)
Directed Graphs

• In undirected graphs, connected components can be represented in n space
 ▪ One “owner label” per vertex

• Can ask to compute all vertices reachable from each vertex in a directed graph
 ▪ i.e. the “transitive closure” of the graph
 ▪ Answer can be different for each vertex
 ▪ Explicit representation may be bigger than graph
 ▪ E.g. size n graph with size n^2 transitive closure
Topological Sort
Job Scheduling

• Given
 ▪ A set of tasks
 ▪ Precedence constraints
 • saying “u must be done before v”
 ▪ Represented as a directed graph

• Goal:
 ▪ Find an ordering of the tasks that satisfies all precedence constraints
Notice that I’m late

Find my way downstairs

Fall out of bed

Look up (at clock)

Drink a cup

Grab my hat

Make bus in seconds flat

Fall out of bed

Drag a comb across my head

Find my coat

Wake up
Wake up →

Find my way downstairs →

Find my coat →

Make the bus in seconds flat →

Grab my hat →

Notice I’m late →

Look up →

Drink a cup →

Fall out of bed →

Drag a comb across my head →

Make the bus in seconds flat →

Grab my hat →

Notice I’m late →

Look up →

Drink a cup →

Fall out of bed →

Drag a comb across my head
Existence

- Is there a schedule?

Diagram:
- Fix hole in bucket
- Fetch Water
- Cut straw
- Whet Stone
- Sharpen Axe
DAG

- Directed Acyclic Graph
 - Graph with no cycles
- Source: vertex with no incoming edges
- Claim: every DAG has a source
 - Start anywhere, follow edges backwards
 - If never get stuck, must repeat vertex
 - So, get stuck at a source
- Conclude: every DAG has a schedule
 - Find a source, it can go first
 - Remove, schedule rest of work recursively
Algorithm I (for DAGs)

• Find a source
 ▪ Scan vertices to find one with no incoming edges
 ▪ Or use DFS on backwards graph

• Remove, recurse

• Time to find one source
 ▪ O(m) with standard adjacency list representation
 ▪ Scan all edges, count occurrence of every vertex as tail

• Total: O(nm)
Algorithm 2 (for DAGs)

- Consider DFS
- Observe that we don’t return from recursive call to DFS(v) until all of v’s children are finished
- So, “finish time” of v is later than finish time of all children
- Thus, later than finish time of all descendants
 - i.e., vertices reachable from v
 - Descendants well-defined since no cycles
- So, reverse of finish times is valid schedule
Implementation (of Alg 2)

• $\texttt{seen} = \{\}; \texttt{finishes} = \{\}; \texttt{time} = 0$

 DFS-visit (s)
 for v in Adj[s]
 if v not in \texttt{seen}
 $\texttt{seen}[v] = 1$
 DFS-visit (v)
 $\texttt{time} = \texttt{time}+1$
 $\texttt{finishes}[v] = \texttt{time}$

 only set $\texttt{finishes}$ if done processing all edges leaving v

• TopologicalSort
 for s in V
 DFS-visit(s)

• Sort vertices by $\texttt{finishes}[]$ key
I'm late
Look up (at clock)
Drink a cup
Find my way downstairs
Fall out of bed
Drag a comb across my head
Find my coat
Make bus in seconds flat
Notice I'm late
Grab my hat
Wake up
2 Find my coat
3 Notice I'm late
4 Look up (at clock)
5 Drink a cup
7 Find my way downstairs
8 Drag a comb across my head
9 Wake up
10 Fall out of bed
Analysis

• Just like connected components DFS
 ▪ Time to DFS-Visit from all vertices is \(O(m+n) \)
 ▪ Because we do nothing with already seen vertices
• Might DFS-visit a vertex \(v \) before its ancestor \(u \)
 ▪ i.e., start in middle of graph
 ▪ Does this matter?
 ▪ No, because \(\text{finish}[v] < \text{finish}[u] \) in that case
Handling Cycles

• If two jobs can reach each other, we must do them at same time

• Two vertices are strongly connected if each can reach the other

• Strongly connected is an equivalence relation
 ▪ So graph has strongly connected components

• Can we find them?
 ▪ Yes, another nice application of DFS
 ▪ But tricky (see CLRS)
 ▪ You should understand algorithm, not proof