6.006- Introduction to
Algomthms

Lecture 10

Prof. Constantinos Daskalakis
CLRS 8.1-8.4

Menu

* Show that ©(n Ig n) 1s the best possible
running time for a sorting algorithm.

* Design an algorithm that sorts in ®(n) time.

« Hint: maybe the models are different ?

Comparison sort

All the sorting algorithms we have seen so far

are comparison sorts: only use comparisons to
determine the relative order of elements.

 E.g., merge sort, heapsort.
The best running time that we’ve seen for
comparison sorting 1s O(nlgn).

Is O(nlgn) the best we can do?

Decision trees can help us answer this question.

Decision-tree

A recipe for sorting n
numbers (a,, d,, ..., a,)

- Nodes are suggested
comparisons:

[;] means
compare a; to a,
fori,j € {1, 2,..., n}.

- Branching direction
depends on outcome
of comparisons.

- Leaves are labeled with permutations corresponding to the
outcome of the sorting.

Decision-tree example

Sort {(a,, a,, a,)
=(9,4,6):

Each internal node 1s labeled i;j for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if ¢; < a..

* The right subtree shows subsequent comparisons it ¢; = a..

Decision-tree example

Sort {(a,, a,, a,)
=(9,4,6):

Each internal node 1s labeled i;j for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if ¢; < a..

* The right subtree shows subsequent comparisons it ¢; = a..

Decision-tree example

Sort {(a,, a,, a,)
=(9,4,6):

Each internal node 1s labeled i;j for i, j € {1, 2,..., n}.
* The left subtree shows subsequent comparisons if ¢; < a..

* The right subtree shows subsequent comparisons it ¢; = a..

Decision-tree example

Sort {(a,, a,, a,)
=(9,4,6):

Each leaf contains a permutation {7t(1), 7t(2),..., m(n)) to

indicate that the ordering a,) < a,, < -** < a,, has been
established.

Decision-tree model

A decision tree can model the execution of
any comparison Sort:
* One tree for each mput size 7.

A path from the root to the leaves of the tree
represents a trace of comparisons that the
algorithm may perform.

* The running time of the algorithm = the length
of the path taken.

» Worst-case running time = height of tree.

Lower bound for decision-
tree sorting

Theorem. Any decision tree that can sort »
elements must have height Q(nlgn).

Proof. (Hint: how many leaves are there?)

* The tree must contain = n! leaves, since there
are n! possible permutations

* A height-/ binary tree has < 2/ leaves

* Thus 2" = p!

h =l1g(n!) (lg 1s mono. increasing)
= lg ((n/e)") (Stirling’s formula)
=nlgn—nlge

=Q(nlgn).

Sorting in linear time

Counting sort: No comparisons between elements.

e Input: A[1 . . n], where A|j|E{1, 2, ..., k} .
* Qutput:. B[1 . . n], a sorted permutation of 4
» Auxiliary storage: C[1 . . k].

Counting sort

fori<— 1tok
do C[i] < 0
for Jj < 1 to n store in C the frequencies of

17 < : - the different keys in 4
do CLAL/II <= ClAU/IT+ 1 | e crin= ikey = i1

for:i < 2 to 3 now C contains the cumulative

: : : - frequencies of different keys in
do ClLiJ <= CLl+ CL=1] T e e = ikey < 11

for ; <— n downto | . .
using cumulative

do B[(][4 [] 1] < A[] | ~ frequencies build
ClA| j]] < ClA4]]]] — sorted permutation

Counting-sort example

one index for each

possible key stored in A
A
2 3 4 5 1 2 3 4

Loop 1: initialization

fori<— 1tok
do C[i] <= 0

Loop 2: count frequencies

for; < 1ton
do ClA[j]] <= ClA[j]] + 1

> Cli] = |ikey = i}

Loop 2: count frequencies

for; < 1ton
do ClA[j]] <= ClA[j]] + 1

> Cli] = |ikey = i}

Loop 2: count frequencies

for; < 1ton
do ClA[j]] <= ClA[j]] + 1

> Cli] = |ikey = i}

Loop 2: count frequencies

for; < 1ton
do ClA[j]] <= ClA[j]] + 1

> Cli] = |ikey = i}

Loop 2: count frequencies

for; < 1ton
do ClA[j]] <= ClA[j]] + 1

> Cli] = |ikey = i}

Loop 2: count frequencies

for; < 1ton
do ClA[j]] <= ClA[j]] + 1

> Cli] = |ikey = i}

|A parenthesis: a quick finish

Walk through frequency array an place
the appropriate number of each key in
output array...

A parenthesis: a quick finish

A parenthesis: a quick finish

A parenthesis: a quick finish

A parenthesis: a quick finish

2 3 4 5 1 2 3 4
1 |34 3 C:1 110122
3131|144

B 1s sorted!

but 1t 1s not “stably sorted”...]

Loop 2: count frequencies

for; < 1ton
do ClA[j]] <= ClA[j]] + 1

> Cli] = |ikey = i}

Loop 3: cumulative frequencies

1 2 3 4 5 1 2 3 4
A 1411|1314 3 C:1 117011212
B: I C1 11122
fori<— 2tok

do C[i] < C[i]+ C[i-1] > C[i] = |{key = i}]

Loop 3: cumulative frequencies

1 2 3 4 5 1 2 3 4
A 1411|1314 3 C:1 117011212
B: I C1 1113 |2
fori<— 2tok

do C[i] < C[i]+ C[i-1] > C[i] = |{key = i}]

Loop 3: cumulative frequencies

1 2 3 4 5 1 2 3 4
A 1411|1314 3 C:1 117011212
B: I C1 1111315
fori<— 2tok

do C[i] < C[i]+ C[i-1] > C[i] = |{key = i}]

Loop 4: permute elements of A

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

B There are exactly 3 elements <A[5];
y so where should I place A[5]?

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

Used-up one 3; update counter.
B: 3 I P P

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

R- 3 There are exactly 5 elements <A[4],
y so where should I place A[4]?

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

1 2 3 4 5 1 2 3 4
A4 |11 13143 C:i1 | 1]1) 4
B 313 4

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

1 2 3 4 5 1 2 3 4
A 4|1 13143 C:i1 | 1]1) 4
B 313 4

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

1 2 3 4 5 1 2 3 4
A 4|1 13143 C:i1 1 1]1) 4
B 313 4

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

1 2 3 4 5 1 2 3 4
A 4|1 13143 C:10 1|14
B:11]3 |3 4

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

1 2 3 4 5 1 2 3 4
A 1411 13143 C:10| 1|14
B:11]3 |3 4

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

1 2 3 4 5 1 2 3 4
A 1411 13143 C:10| 1|14
B:11]3 |3 4

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Loop 4: permute elements of A

for j <— n downto 1
do BIC[A[]]]| <= Al J]
ClAlj]] < Cl4[j]] -1

Analysis

fori<— 1tok
do C[i] < 0
for;<—1ton
O) do CLALT) — CLAL/T + 1
fori<—2tok
do C[i] < C[i] + C[i-1)
for ; < n downto |
O(n) do B[C[A|/]]] <= AlJ]
ClALj]] < ClA[j]] -

O (k)

O(k)

O + k)

Running time

If &= O(n), then counting sort takes O(») time.
* But, sorting takes (7 lg n) time!

* Where’s the fallacy?

Answer:

* Comparison sorting takes C2(n lgn) time.
* Counting sort 1s not a comparison sort.

* In fact, not a single comparison between
elements occurs!

Stable sorting

Counting sort 1s a stable sort: 1t preserves
the mput order among equal elements.

A4 |1 13143

Radix sort

* Origin: Herman Hollerith’s card-sorting
machine for the 1890 U.S. Census. (See

Appendix

i)

)

* Digit-by-digit sort.

 Hollerith’s original (bad) 1dea: sort on most-
significant digit first.

* Good 1dea: Sort on least-significant
digit first with auxiliary stable sort.

Operation of radix sort

329
457
657
339
436
720
355

720
355
436
457
657
329
339

720
329
436
339
355
457
657

329
355
436
457
657
720
339

M X

Correctness of radix sort

Induction on digit position

* Assume that the numbers
are sorted by their low-order
t— 1 digits.

* Sort on digit ¢

720
329
436
339
355
457
657

329
355
436
457
657
720
339

__

Correctness of radix sort

Induction on digit position

» Assume that the numbers
are sorted by their low-order

t— 1 digits.
* Sort on digit ¢

= Two numbers that differ in
digit 7 are correctly sorted.

720 329
329 355
436 436
339 457
355 657
457 720
657 339

__

Correctness of radix sort

Induction on digit position

» Assume that the numbers
are sorted by their low-order

t— 1 digits.
* Sort on digit ¢

= Two numbers that differ in
digit 7 are correctly sorted.

" Two numbers equal in digit ¢
are put 1n the same order as
the mput = correct order.

720 329
329 355
436—>436
339 457
355/657
457 720
657 339

__

Runtime Analysis of radix sort

» Assume counting sort is the auxiliary stable sort.
* Sort n computer words of b bits each.

* Each word can be viewed as having 5/ base-2"

d1 gitS. R Q Q Q
Example: 32-bit word

* If each H-bit word 1s broken into -bit pieces,
each pass of counting sort takes O(n + 2) time.

* Setting »=log n gives O(n) time per pass, or
O(n b/log n) total

