6.006-Introduction to Algorithms

Lecture 10

Prof. Constantinos Daskalakis

CLRS 8.1-8.4

Menu

- Show that $\Theta(n \lg n)$ is the best possible running time for a sorting algorithm.
- Design an algorithm that sorts in $\Theta(n)$ time.
- Hint: maybe the models are different?

Comparison sort

All the sorting algorithms we have seen so far are *comparison sorts*: only use comparisons to determine the relative order of elements.

• *E.g.*, merge sort, heapsort.

The best running time that we've seen for comparison sorting is $O(n \lg n)$.

Is O(n lg n) the best we can do?

Decision trees can help us answer this question.

Decision-tree

- Branching direction depends on outcome of comparisons.
- Leaves are labeled with permutations corresponding to the outcome of the sorting.

Each internal node is labeled *i*:*j* for $i, j \in \{1, 2, ..., n\}$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

Each internal node is labeled *i*:*j* for $i, j \in \{1, 2, ..., n\}$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

Each internal node is labeled *i*:*j* for $i, j \in \{1, 2, ..., n\}$.

- The left subtree shows subsequent comparisons if $a_i \le a_j$.
- The right subtree shows subsequent comparisons if $a_i \ge a_j$.

Each leaf contains a permutation $\langle \pi(1), \pi(2), ..., \pi(n) \rangle$ to indicate that the ordering $a_{\pi(1)} \le a_{\pi(2)} \le \cdots \le a_{\pi(n)}$ has been established.

Decision-tree model

A decision tree can model the execution of any comparison sort:

- One tree for each input size *n*.
- A path from the root to the leaves of the tree represents a trace of comparisons that the algorithm may perform.
- The running time of the algorithm = the length of the path taken.
- Worst-case running time = height of tree.

Lower bound for decisiontree sorting

Theorem. Any decision tree that can sort n elements must have height $\Omega(n \lg n)$.

Proof. (Hint: how many leaves are there?)

- The tree must contain $\geq n!$ leaves, since there are n! possible permutations
- A height-h binary tree has $\leq 2^h$ leaves

```
• Thus 2^h \ge n!

h \ge \lg(n!) (lg is mono. increasing)

\ge \lg ((n/e)^n) (Stirling's formula)

= n \lg n - n \lg e

= \Omega(n \lg n).
```

Sorting in linear time

Counting sort: No comparisons between elements.

- *Input*: A[1...n], where $A[j] \in \{1, 2, ..., k\}$.
- Output: B[1 ... n], a sorted permutation of A
- Auxiliary storage: C[1 ... k].

Counting sort

```
for i \leftarrow 1 to k
 do C[i] \leftarrow 0
 for j \leftarrow 1 to n
```

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

using cumulative frequencies build sorted permutation

Counting-sort example one index for each

B:

Loop 1: initialization

	1	2	3	4
7.	0	0	0	0

for
$$i \leftarrow 1$$
 to k

$$do C[i] \leftarrow 0$$

	1	2	3	4
•	0	0	0	1

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

	1	2	3	4
C:	1	0	0	1

for *j* ← 1 **to** *n*
do
$$C[A[j]] \leftarrow C[A[j]] + 1$$
 $\triangleright C[i] = |\{\text{key} = i\}|$

	1	2	3	4
~.	1	0	1	1

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

	1	2	3	4
7.	1	0	1	2

for *j* ← 1 **to** *n*
do
$$C[A[j]] \leftarrow C[A[j]] + 1$$
 $\triangleright C[i] = |\{\text{key} = i\}|$

	1	2	3	4
:	1	0	2	2

for
$$j \leftarrow 1$$
 to n
do $C[A[j]] \leftarrow C[A[j]] + 1 \quad \triangleright C[i] = |\{\text{key} = i\}|$

	1	2	3	4
~.	1	0	2	2

for *j* ← 1 **to** *n*
do
$$C[A[j]] \leftarrow C[A[j]] + 1$$
 $\triangleright C[i] = |\{\text{key} = i\}|$

Walk through frequency array an place the appropriate number of each key in output array...

<i>B</i> :	1				
------------	---	--	--	--	--

<i>B</i> : 1

D.	1	2	2	
<i>B</i> :	1	3	3	

B is sorted!
but it is not "stably sorted"...]

	1	2	3	4
~.	1	0	2	2

for *j* ← 1 **to** *n*
do
$$C[A[j]] \leftarrow C[A[j]] + 1$$
 $\triangleright C[i] = |\{\text{key} = i\}|$

Loop 3: cumulative frequencies

$$C: \begin{array}{|c|c|c|c|c|c|c|c|} \hline 1 & 2 & 3 & 4 \\ \hline 1 & 0 & 2 & 2 \\ \hline \end{array}$$

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

Loop 3: cumulative frequencies

	1	2	3	4
<i>C</i> :	1	0	2	2

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

Loop 3: cumulative frequencies

for
$$i \leftarrow 2$$
 to k
do $C[i] \leftarrow C[i] + C[i-1]$ $\triangleright C[i] = |\{\text{key } \le i\}|$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

There are exactly 3 elements $\leq A[5]$; so where should I place A[5]?

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Used-up one 3; update counter.

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

	1	2	3	4
7.	1	1	2	5

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

There are exactly 5 elements $\leq A[4]$, so where should I place A[4]?

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

	1	2	3	4
· •	1	1	2	4

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

	1	2	3	4
•	1	1	1	4

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

	1	2	3	4
7.	1	1	1	4

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

C: 0 1 1 4		1	2	3	4
	7.	0	1	1	4

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

1	2	3	4
0	1	1	4

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

for
$$j \leftarrow n$$
 downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

Analysis

$$\Theta(k)$$

$$\Theta(n)$$

$$\Theta(k)$$

$$\Theta(n)$$

for
$$i \leftarrow 1$$
 to k
do $C[i] \leftarrow 0$
for $j \leftarrow 1$ to n
do $C[A[j]] \leftarrow C[A[j]] + 1$
for $i \leftarrow 2$ to k
do $C[i] \leftarrow C[i] + C[i-1]$
for $j \leftarrow n$ downto 1
do $B[C[A[j]]] \leftarrow A[j]$
 $C[A[j]] \leftarrow C[A[j]] - 1$

$$\Theta(n+k)$$

Running time

If k = O(n), then counting sort takes $\Theta(n)$ time.

- But, sorting takes $\Omega(n \lg n)$ time!
- Where's the fallacy?

Answer:

- Comparison sorting takes $\Omega(n \lg n)$ time.
- Counting sort is not a *comparison sort*.
- In fact, not a single comparison between elements occurs!

Stable sorting

Counting sort is a *stable* sort: it preserves the input order among equal elements.

Radix sort

- *Origin*: Herman Hollerith's card-sorting machine for the 1890 U.S. Census. (See Appendix ①.)
- Digit-by-digit sort.
- Hollerith's original (bad) idea: sort on mostsignificant digit first.
- Good idea: Sort on *least-significant* digit first with auxiliary stable sort.

Operation of radix sort

3 2	9	7	2	0	7	2	0	3	2	9
4 5	7	3	5	5	3	2	9	3	5	5
6 5	7	4	3	6	4	3	6	4	3	6
8 3	9	4	5	7	8	3	9	4	5	7
4 3	6	6	5	7	3	5	5	6	5	7
7 2	0	3	2	9	4	5	7	7	2	0
3 5	5	8	3	9	6	5	7	8	3	9
	J		J	1	J	1		T		

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit *t* are correctly sorted.

Correctness of radix sort

Induction on digit position

- Assume that the numbers are sorted by their low-order *t* − 1 digits.
- Sort on digit *t*
 - Two numbers that differ in digit t are correctly sorted.
 - Two numbers equal in digit t are put in the same order as the input \Rightarrow correct order.

Runtime Analysis of radix sort

- Assume counting sort is the auxiliary stable sort.
- Sort *n* computer words of *b* bits each.
- Each word can be viewed as having b/r base- 2^r digits.

Example: 32-bit word

- If each *b*-bit word is broken into *r*-bit pieces, each pass of counting sort takes $\Theta(n + 2^r)$ time.
- Setting $r = \log n$ gives $\Theta(n)$ time per pass, or $\Theta(n \ b/\log n)$ total