1 Overview

- Rolling Hash
- Sorting
- Master Theorem
- Universal Hashing

2 Rolling Hash

Idea: Hash functions can be related!

Example: Hashing strings “the” and “her”

Converting to numbers:

“the” = (t · (26)^2 + h · (26) + e)
“her” = (h · (26)^2 + e · (26) + r) = 26(“the” - t) + r

In general: Converting to base-b numbers using:

N(S) = S_0 b^L + S_1 b^{L-1} + S_2 b^{L-2} + ... + S_{L-1} b + S_L

Given S and S' = S_{0:L} and S'' = S_{n:L+M+n}

N(S'') = b^{M+n} (N(S') - b^{L-n} N(S'_{0:n})) + N(S''_{L+1:L+n+M})

Mod properties:

ab mod m = ((a mod m)(b mod m)) mod m
(a + b) mod m = ((a mod m) + (b mod m)) mod m
h_m(S) = N(S) mod m = (((S_0 mod m)(b^L mod m)) mod m)+...+S_L mod m) mod m

h_m(S'') = N(S'') mod m
= (b^{M+n} h_m(S') - b^{L-n} h_m(S'_{0:n}) + h_m(S''_{L+1:L+n+M})) mod m

Just store division hash!

One character move:

(b(h_m(S') - b^{L-1} h_m(S'_0)) + h_m(S''_{L+1})) mod m

Constant time hash calculation!
3 Sorting

Idea: Given list of numbers, sort them from smallest to largest.

MERGE SORT

1. One element, done
2. Merge-Sort(\(A[1 : n/2]\))
3. Merge-Sort(\(A[n/2 + 1 : n]\))
4. Merge two arrays

Two-Finger Algorithm

Idea: One finger in each list. Advance finger on smaller element.

Example:

\[
\begin{array}{cccccc}
1 & 2 & 5 & 3 & 19 & 18 \\
& & 21 & 25 & & \\
1 & 2 & 3 & 5 & 18 & 19 & 21 & 25
\end{array}
\]

Time: \(O(n)\) since you only touch each element once

Space: If you create a new array each time \(n \log n\) but can be done in place (complicated)

Best Case: \(O(n)\) if already sorted (yay good!)

4 Master Theorem

IDEA: Used to solve running time for recurrence relations. Like Merge Sort.

\[T(n) = 2T(n/2) + O(n) \]

General form: \(T = aT(n/b) + f(n) \)

Think of recurrence as tree:

Height: \(\log_b(n)\)

Number of leaves: \(a^{\log_b(n)}\)
LOG PROPERTY:

\[a^{\log_b(n)} = n^{\log_a(a)} \]

\[\log_b(n) = \log_b(a^{\log_a(n)}) = \log_a(n) \log_b(a) \]

\[\log_b(x^y) = y \log_b(x) \] because \(\log_b(x^y) \) is the number we must raise \(b \) to to get \(x^y \) and \(b^\log_b(x) = x^y \).

\[a^{\log_a(n)} = (a^{\log_a(n)})^{\log_a(a)} = n^{\log_a(a)} \]

What is the work done?

That depends on what the work per level looks like.

We KNOW we do \(O(f(n)) \) work and \(O(a^{\log_a(n)}) \) work. Question: Which dominates?

CASES:

1. Leaves dominate. Implies that each level does an order of magnitude less work than the level below it. This is true when \(f(n) = O(n^{\log_a(a)-\epsilon}) \):

 Note: Clearly top level does order of magnitude less work than leaves.

 At level \(i \): \(a^i \) nodes do \(f(n/(b^i)) \) work

 \[= a^i O((n \cdot b^{-i})^{\log_a(a)}) = a^i O(n^{\log_a(a) - \epsilon b^{-i \log_a(a)}}) \]

 \[= a^i O(n^{\log_a(a) - \epsilon b^i / a^i}) \]

 \[= O(n^{\log_a(a) - \epsilon i b^i}) \] (1)

So total work is

\[O(n^{\log_a(a) - \epsilon}) + O(n^{\log_a(a) - \epsilon b^i}) + O(n^{\log_a(a) - \epsilon b^{2i}}) + ... + O(n^{\log_a(a) - \epsilon b^{\log_a(n) \epsilon}}) \]

\[= O(n^{\log_a(a) - \epsilon n^\epsilon}) \]

\[= O(n^{\log_a(a)}) \] (2)

2. Root node dominates. Implies that each level does order of magnitude less work than level below it. NOTE: third case from class

 Let \(f = O(n^{\log_a(a)+\epsilon}) \).

 Work at level \(i \) is:

 \[a^i O(n^{\log_a(a)+\epsilon} b^{-i \log_a(a) - i \epsilon}) \]

 \[= O(n^{\log_a(a)+\epsilon} b^{-i \epsilon}) \] (3)

Total work is

\[O(n^{\log_a(a)+\epsilon}) + O(n^{\log_a(a)+\epsilon} b^{-\epsilon}) + ... + O(n^{\log_a(a)}) \]

\[= O(n^{\log_a(a)+\epsilon}) = f(n) \] (4)
3. What if \(f(n) = O(n^{\log_b(a) \log^k(n)}) \)?

Why \(\log^k(n) \)? Because a log is the largest order of magnitude function that cannot be expressed as \(n^c \) and we’ve covered that case.

At level \(i \) work

\[
= a^i O(n^{\log_b(a) b^{-i \log_b(a)} \log^k(n/b^i)}) \\
= O(n^{\log_b(a) \log^k(n/b^i)}) \quad (5)
\]

Total work:

\[
= O(n^{\log_b(a) \log^k(n)}) + O(n^{\log_b(a) \log^k(n/b)}) + \ldots + O(n^{\log_b(a)}) \\
= O(\text{treeheight} \cdot n^{\log_b(a) \log^k(n)}) \\
= O(n^{\log_b(a) \log^{k+1}(n)}) \\
= \log(n) f(n) \quad (6)
\]

NOTE: Changing bases in a log is just multiplying by a constant:

\[
\log_b(x) = \log_c(x)/\log_c(b)
\]

EXAMPLES:

- **MergeSort:**
 \[T(n) = 2T(n/2) + O(n) \]
 \(a = 2, b = 2, n^{\log_b(a)} = n \) Case \(f(n) = O(n^{\log_b(a)}) \). Work is \(n \log n \).

- **T(n) = 8T(n/2) + O(n^2)**
 \(a = 8, b = 2, n^{\log_b(a)} = n^3 \) Case \(f(n) < O(n^{\log_b(a)}) \). Work is \(n^3 \).

- **T(n) = 3T(n/2) + n \log n** Case \(f(n) > O(n^{\log_b(a)}) \). Work is \(n \log n \).

- \(2^n T(n/2) + n^n \) can’t be solved. \(a \) is not constant!

- \(0.5 T(n/2) + n \) doesn’t have a recursion.

5 Universal Hashing

Definition: A family of hash functions \(H = \{h_0, h_1, \ldots\} \) is *universal* if, for a randomly chosen pair of keys \(k, l \in U \) and randomly chosen hash function \(h \in H \), the probability that \(h(k) = h(l) \) is not more than \(1/m \) where \(m \) is the size of the hash table.
This is useful because if you pick a hash function from H when your program begins in such a way that an adversary cannot know in advance which function you will pick, the adversary cannot in advance guess two keys that will map to the same value.

Example: The family of hash functions

$$h_{a,b}(x) = ((ax + b) \mod p) \mod m$$

where $0 < a < p$, $b < p$, $m < p$, and $|U| < p$ for prime p is universal.

Proof: Consider $k,l \in U$ with $k \neq l$. For a given $h_{a,b}$ let

$$r = (ak + b) \mod p$$
$$s = (al + b) \mod p$$

Note that $r \neq s$ since

$$r - s \equiv a(k - l) \mod p$$

cannot be zero since $0 < a < p$, $k < p$, and $l < p$ so $a(k - l)$ cannot be a multiple of p.

Now consider

$$a = ((r - s)((k - l)^{-1} \mod p)) \mod p$$
$$b = (r - ak) \mod p.$$ \hspace{1cm} (10)

Now since $r \neq s$, there are only $p(p - 1)$ possible pairs (r, s). Similarly, since we require $a \neq 0$, there are only $p(p - 1)$ pairs (a, b). Equations 10 and 10 give a one-to-one map between pairs (r, s) and pairs (a, b). Therefore, each choice of (a, b) must produce a different (r, s) pair. If we pick (a, b) uniformly, at random then (r, s) is also distributed uniformly at random.

The probability that two keys k and l with $k \neq l$ have the same hash value is the probability that $r \equiv s \mod m$. Therefore, we must have that

$$r - s \in \{m, 2m, ...,qm\}$$ \hspace{1cm} (11)

where $qm < p$. This gives us at most $[p/m] - 1 \leq (p - 1)/m$ possible values for s such that s can collide with r. Since the pairs are distributed at random, and $s \neq r$, we have $p - 1$ values for s that are all equally probable. Thus

$$Pr[s \equiv r \mod m] = \frac{p - 1/m}{p - 1} = \frac{1}{m}$$

$$\Rightarrow Pr[h(k) = h(l)] = \frac{1}{m}$$ \hspace{1cm} (12)

This proof was taken from CLRS Section 11.3.3.