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1 Lower Bound on Sort

Comparison-based algorithms: Insertion sort, merge sort, etc... all rely on sorting by comparing elements
to one another.

These algorithms can be represented by a decision tree. Each node of the decision tree is a comparison,
children are comparison you should make after each possible outcome.

Every comparison-based sorting algorithm can be represented by a decision tree. Any algorithm that
relies on comparing elements to each other can be broken down like this.

A path in the tree is a trace of the algorithm.

So the worst case running time is height of tree since we might have to trace all the way down it.
Theorem: Any tree that can sort n elements must have height Q(nlogn).

Proof: There must be n! leaves since we have to be able to get every possible ordering. The decision
tree is binary so we must have that for height h, 2" > n!. So

h >1g(n!) > log((n/e)") > nlog(n) — nlog(e) = O(nlogn)

. The last step is by Stirling’s Theorem, which says n! = (n/e)".

2 Counting Sort

Counting sort can beat comparison sort bound because it doesn’t use comparisons. In order not to use
comparisons, we must have a little bit of “extra” knowledge. Namely: given an array A to sort, we need
to be able to map every element that might appear in A uniquely to integers in [1, k] where k is a small
integer.

Input: A array to be sorted
Output: B sorted array of elements of A

Pass 1: Create array C of length k. C[i] stores the number of times i appears in A. For each i,

ClA[]] = ClA[{]] + 1



Pass 2: For each entry ¢ in C, put C[i] i’s in B.
This takes O(n + k).

Problem: B is not stably sorted. Two equal keys may swap their relative orders. We would like to avoid
that.

New algorithm: Create C’, which stores in C’[i] number of numbers in A less than or equal to i. Fill in
C' after filling in C just by keeping running total.

Now, for j = length[A] downto 1, place A[j] at C'[A[j]] in B and decrement C'[A[j]]. Now the sorting
is stable.

Example: We know we are sorting numbers from 1 to 8

A = [2,7,5,3,5,4]
Cc = [0,1,1,1,2,0,1,0]
C' = [0,1,2,3,5,5,6,6

Stepping through the second pass (0 in B indicates nothing there yet):

1.
B = [0,0,0,0,0,0]
¢’ = [0,1,2,3,5,5,6,6]

2.

B = [0,0,4,0,0,0]
¢ = [0,1,2,2,5,5,6,6]

3.

B = [0,0,4,0,5,0]
' = [0,1,2,2,4,5,6,6|

4.

B = [0,3,4,0,5,0]
c' = [0,1,1,2,4,5,6,6]

5.

B = [0,3,4,5,5,0]
¢ = [0,1,1,2,3,5,6,6|

6.

B = [0,3,4,5,5,7]
¢ = [0,1,1,2,3,5,5,6|

7.

B = [2,3,4,5,5,7]
C’ = [0,0,1,2,3,5,5,6]



3 Radix Sort

Digit-by-digit sort of list of numbers. Sort on least-significant digit first using a stable sort.

Why least significant? FExample: Most significant

33 33 52

5, — 55 — 33

52 52 55
Oops!

Why do we need a stable sort? Because we don’t want to mess up orderings caused by earlier
digits in later digits!

Example: Sort 33, 55, 52

33 52 33
55 — 33 = 52
52 %) 95

We can only guarantee that 52 comes before 55 if we can guarantee the sort on the second digit is stable!

Running Time: Sorting n words of b bits each: Each word has b/r 2"-base digits. Example: 32-bit
word is has 4 8-bit digits. Each counting sort takes O(n + 2"), we do b/r sorts. Choose r = logn, gives
running time O(nb/logn).

Correctness: By induction on number of digits.
Base Case: If all numbers have one digit, we sort them correctly by definition of the sorting algorithm.

Inductive Step: Assume we can sort numbers with & — 1 digits correctly. Now consider sorting numbers
of k digits. The first k£ — 1 sorts, sort the last & — 1 digits of the numbers correctly by the inductive
hypothesis. The kth sort sorts the last k digits correctly. Now consider two numbers nq and ny. Assume,
WLOG that ny < ns. If the kth digits of n; and no are different, n; precedes ny in the sorting order
since we just sorted on the kth digit. If the kth digits are the same, then ny and no are in the same
relative order as they were before the sort since the sort is stable. Since the kth digits are the same, we
must have that the last k — 1 digits of ny is smaller than the last k — 1 digits of ny so ny preceded nsy in
k — 1 sort by the inductive hypothesis.

4 Graph Overview

Graph G = (V,E), V vertices, E edges. Can be directed or undirected. Upper bound on edges for
directed graph: n(n — 1), for undirected: n(n —1)/2

Unless otherwise specified, no loops and only one directed edge from vy to vs.

Example: Robot navigation.



Rooms connected together. Can do different things in different rooms. Adjacency defined by which
states can transition to which other states. Searching this graph gives possible plans for getting from
one state to another.

Adjacency lists: Use |V linked lists. Could use a hash table.

Directed graph only stores outgoing neighbors (although many people do store both for convenience in
two different lists).

Adjacency matrix: a;; = 1 if that edge exists. Can use for directed or undirected.

Powers of matrix are interesting: A™ represents whether there is a path of length n between i and j.
Note: Only gives paths of length n, may be a path of length less than n.

Tradeoffs: e is the maximum number of edges originating at any vertex

Data Structure Add edge Adjacency checking Visit all neighbors Remove edge
List 0O(1) O(e) O(e) O(e)
Matrix 0O(1) O(1) O(n) 0(1)

Also possible to represent graph implicitly: Just implement Adj(u) that returns all neighbors of w.

Example: Infinite grid. Squares are adjacent to top, bottom, left, right. Impossible to write down
adjacency matrix, easy to implement Adj.



