
This list of problems goes approximately from easier problems to harder problems. The first few problems
are for warmup and easier than anything you might see on the exam, but don’t panic if you can’t do the
last few problems.

Solutions to these problems, as with most DP problems, take the form of a recurrence relation, a short
correctness proof of the recurrence relation (if it’s not immediately obvious) and a running time analysis.

1. Maximum value contiguous subsequence: Given a sequence of n real numbers, a1, a2, ..., an,
give an algorithm for finding a contiguous subsequence for which the value of the sum of the
elements is maximized.

Solution:

Recursion: We recurse on the maximum value subsequence ending at j:

M(j) =

{
aj if j = 0
max(M(j − 1) + aj , aj) else

(1)

With each element of M , you also keep the starting element of the sum (the same as for M(j − 1)
or j if you restart). At the end, you scan M for the maximum value and return it and the starting
and ending indexes. Alternatively, you could keep track of the maximum value as you create M .

Running Time: M is size n and evaluating each element of M takes O(1) time for O(n) time to
create M . Scanning M also takes O(n) time for a total time of O(n).

2. Car Assembly (see Figure 15.1 in CLRS): A factory has two assembly lines, each with n stations.
A station is denoted by Si,j where i is either 1 or 2 and indicates the assembly line the station
is on, and j indicates the number of the station. The time taken per station is denoted by ai,j .
A car chasis must pass through each of the n stations in order before exiting the factory. After
it passes through station Si,j it will continue to station Si,j+1 unless it decides to transfer to the
other line. Continuing on the same line incurs no extra cost, but transfering from line i at station
j − 1 to station j on the other line takes time ti,j . There is also an entry time ei and exit time xi

which may be different for the two lines. Give an algorithm for computing the minimum time it
will take to build a car chasis.

Solution:

Recursion Relation: We recurse on T1(j) and T2(j), the fastest way to get to station j on line 1
and the fastest way to get to station j on line 2 respectively. The relation is:

T1(j) =

{
e1 + a1,1 if j = 1
min(T1(j − 1) + a1,j , T2(j − 1) + t2,j + a1,j) else

(2)

T2(j) =

{
e2 + a2,1 if j = 1
min(T2(j − 1) + a2,j , T1(j − 1) + t1,j + a2,j) else

The solution is then min(T1(n) + x1, T2(n) + x2).

Running Time: Each T is of size n and each entry takes O(1) time to compute for a total running
time of O(n).

3. Making change: You are given n types of coins with values v1, ..., vn and a cost C. You may
assume v1 = 1 so that it is always possible to make any cost. Give an algorithm for finding the
smallest number of coins required to sum to C exactly.

For example, assume you coins of values 1, 5, and 10. Then the smallest number of coins to make
26 is 4: 2 coins of value 10, 1 coin of value 5, and 1 coin of value 1.

Solution:

1

Recursion: We recurse on M(j), the minimum number of coins required to make change for cost
j.

M(j) =

{
0 if j = 0
minvi∈n(M(j − vi)) + 1 else

(3)

Running Time: M has C elements and computing each element takes O(n) time so the total
running time is O(nC).

4. Box stacking: You are given a set of boxes {b1, ..., bn}. Each box bj has an associated width wj ,
height hj and depth dj . Give an algorithm for creating the highest possible stack of boxes with the
constraint that if box bj is stacked on box bi, the 2D base of bi must be larger in both dimensions
than the base of bj . You can of course, rotate the boxes to decide which face is the base, but you
can use each box only once.

For example, given two boxes with h1 = 5, w1 = 5, d1 = 1 and h2 = 4, w2 = 5, h2 = 2, you should
orient box 1 so that it has a base of 5x5 and a height of 1 and stack box 2 on top of it oriented so
that it has a height of 5 for a total stack height of 6.

Solution:

Recursion: Memoize over H(j, R), the tallest stack of boxes with j on top with rotation R.

H(j, R) =

{
0 if j = 0
maxi<j with wi>wj ,di>dj

(H(i, R) + hj) if j > 0 (4)

Running Time: The size of H is O(n|R|) where R is the number of possible rotations for a box.
For our purposes, |R| = 3 (since we only care about which dimension we designate as the “height”)
so |H| = O(n). Filling in each element of H is also O(n) for a total running time of O(n2).

5. Balanced Paritions: Suppose you are given an array of n integers {a1, ..., an} between 0 and M .
Give an algorithm for dividing these integers into two sets x and y such that |

∑
xi∈x xi−

∑
yi∈y yi|,

the difference of the sum of the integers in each set, is minimized. For example, given the set
{2, 3, 2, 7, 9}, you can divide it into {2, 2, 7} (sums to 11) and {3, 9} (sums to 12) for a difference
of 1.

Solution:

Recursion Relation: Consider just the set of the numbers {a1, ..., aj}. What sums can we make
with that set or subsets of it? We can make

• Any sums we could make with a subset of {a1, .., aj−1}
• Any sums we could make with a subset of {a1, ..., aj−1}+ aj

So: Let cij be 1 if a subset of {a1, ..., ai} adds to j and 0 otherwise. The recursion relation for cij
is

cij =

{
1 if i = 0 and j = 0
max

[
ci−1,j , ci−1,j−aj

] (5)

We find the value of j, let it be b, closest to T =
(∑

j aj

)
/2 such that cnj = 1. The minimum

difference is 2(T − b).

Running Time: We need only let j go to nM since the integers are bounded. Therefore, the size
of c is n2M and filling it in takes O(1) per entry for a total running time of O(n2M).

6. Boolean parenthesizations: You are given a boolean expression consisting of a string of the
symbols TRUE, FALSE, AND, OR, and XOR. Give an algorithm for finding the number of ways
to parenthesize the expression such that it will evaluate to TRUE. For example, there is only 1

2

way to parenthesize FALSE AND TRUE XOR TRUE such that it evaluates to TRUE: (FALSE
AND TRUE) XOR TRUE. (XOR is exclusive or: F XOR F = F, T XOR F = T, F XOR T = T,
T XOR T = F)

Solution:

Recursion: Let our expression consist of n atomic elements (TRUE, FALSE) and n− 1 operators
(AND, OR, XOR). The ith atomic element is ai and the ith operator is oi so that our expression is
a1o1a2o2...an−1on−1an. We keep T (i, j), the number of parenthesizations that makes the expression
between ai and aj true, and F (i, j), the number of parenthesizations that makes the expression
between ai and aj false. The recursion for each is:

T (i, j) =

j∑
k=i

 T (i, k)T (k + 1, j) if ok =and
(T (i, k) + F (i, k))(T (k + 1, j) + F (k + 1, j))− F (i, k)F (k + 1, j) if ok =or
T (i, k)F (k + 1, j) + F (i, k)T (k + 1, j) if ok =xor

(6)

F (i, j) =

j∑
k=i

 (T (i, k) + F (i, k))(T (k + 1, j) + F (k + 1, j))− T (i, k)T (k + 1, j) if ok =and
F (i, k)F (k + 1, j) if ok =or
F (i, k)F (k + 1, j) + T (i, k)T (k + 1, j) if ok =xor

Running Time: There are O(n2) elements in each of T and F and filling in each element takes
O(n) time for a total running time of O(n3).

7. Edit Distance: Given two text strings A = a1a2...an of length n and B = b1b2...bm of length
m, you want to transform A into B with a minimum number of operations of the following types:
delete a character from A, insert a character into A, or change some character in A into a new
character. The minimal number of such operations required to transform A into B is called the
edit distance between A and B. Give an algorithm for finding the edit distance from A to B.

Solution:

Recursion Relation: We recurse on m(i, j), the minimum number of operations to change A(1 : i)
into B(1 : j). The relation is

m(i, j) = min

(
m(i− 1, j) + 1,m(i, j − 1) + 1,

{
m(i− 1, j − 1) if ai = bj
m(i− 1, j − 1) + 1 else

)
(7)

Running Time: m has nm elements and evaluating each element takes O(1) time for a total running
time of O(nm).

8. Building Bridges: Consider a 2-D map with a horizontal river passing through its center. There
are n cities on the southern bank with x-coordinates a1...an and n cities on the northern bank with
x-coordinates b1...bn. The cities on each bank are also numbered 1 through n and these numbers
do not correspond to the ordering of the x-coordinates. You can only build a bridge from a city on
the south bank to a city on the north bank with the same number. No two bridges may cross each
other. An example of a valid bridge building is shown in Figure 1. Give an algorithm for finding
the maximum number of bridges that can be built.

Solution:

Consider the sequences A = N(a1), ..., N(an) and B = N(b1), ..., N(bn) where N(ai) is the number
of the city with x-coordinate ai. The length of the longest common subsequence of A and B is
the maximum number of bridges. Since A and B are non-repeating, you showed in problem set
6 that the length of the LCS for A and B can be calculated in O(n log n) time. Make sure you
understand why that is the case!

3

River

1 3 2 4

4
1 2

3

City
Bridge

Figure 1: An example of a valid bridge building.

Proof that length of the LCS is the maximum number of bridges: We show that the maximum
number of bridges cannot be more than the length of the LCS and that the maximum number of
bridges cannot be less than the length of the LCS.

Firstly, assume the length of the LCS is m. Let c1, ..., cm be a longest common subsequence of A
and B, corresponding to cities ai1 , ..., aim in A and bj1 , ..., bjm in B. Then for 0 < k ≤ m, we can
draw a bridge from aik to bik . None of these bridges intersect. Therefore, we can draw at least as
many bridges as the length of the LCS.

Now assume we can draw at most m bridges from cities CA = ai1 , ..., aim to cities CB = bj1 , ..., bjm
and WLOG assume CA is ordered by increasing x-coordinate. Then N(aik) = N(bjk) since we
can draw a bridge between them. Moreover, bjk must have a higher x-coordinate than any of
bj1 , ...bjk−1

and a lower x-coordinate than any of bjk+1
, ..., bjm so that none of the bridges cross.

Therefore CA is a subsequence of A and CB is a subsequence of B and we have found a common
subsequence. Thus, the length of the LCS is at least the maxmimum number of bridges.

9. Function Approximation: Assume a function f(x) generated a sequence of n points in the
plane (xi, yi). Given an integer k, we choose a subset of k + 1 points and order them according to
increasing x-coordinate. This subset must include the first point (x1, y1) (smallest x-coordinate)
and the last point (xn, yn) (largest x-coordinate). We define the function g(x) as the straight line
segments connecting each point to the next point in the set so g(x) consists of k line segments.
The error is then defined as

e =

n∑
i=1

(yi − g(xi))
2. (8)

Give an algorithm that takes the n points and k as input and minimizes the error.

Solution:

Recursion Relation: We recurse on E(i, j), the error of the best approximation gi of the first i
points using at most j line segments. Note that as before, we must have a line segment starting
at (x1, y1) and a line segment ending at (xi, yi). The recurrence is

E(i, j) =

 0 if i = 1
∞ if i > 1 and j = 0
min0<l<i(E(l, j − 1) + e(l, i))

(9)

where e(l, i) =
∑i

k=l(yl − gi(xl))
2 assuming we draw the last line segment of gi from pl to pi.

Running Time: E has n2 entries, each of which take time O(n) to calculate for a total running
time of O(n3).

4

10. Two-Person Traversal of a Sequence of Cities: You are given an ordered sequence of n
cities, and the distances between every pair of cities. Design an algorithm to partition the cities
into two subsequences (not necessarily contiguous) such that person A visits all cities in the first
subsequence (in order), person B visits all cities in the second subsequence (in order), and the sum
of the total distances travelled by A and B is minimized. Assume that person A and person B
start initially at the first city in their respective subsequences.

Solution:

Recursion Relation: We recurse on C(i, j), the minimum distance traveled if person A ends at city
i and person B ends at city j. Assume WLOG i < j. The relation is:

C(i, j) =

{ ∑j−1
k=1 d(k, k + 1) if i = 0

min0<k<i(C(k, j) + d(k, i)) else
(10)

where d(i, j) is the distance between cities i and j.

Running Time: There are n2 entries in C(i, j) and filling in each entry takes O(n) for a total of
O(n3).

11. Bin Packing: You have n1 items of size s1, n2 items of size s2, and n3 items of size s3. Design
an algorithm to pack all of these items into bins each of capacity C, with C ≥ s3 ≥ s2 ≥ s1, such
that the total number of bins used is minimized.

Solution:

Recursion Relation: We recurse on B(i, j, k), the minimum number of bins of capacity C required
to pack i items of size s1, j items of size s2 and k items of size s3. The relation is:

B(i, j, k) = min
0≤i′≤i,0≤j′≤j,0≤k′≤k

(B(i′, j′, k′) + B(i− i′, j − j′, k − k′)) (11)

where at least one of i′, j′, or k′ must be greater than 0 and one of i′, j′, or k′ must be less than
i, j or k respectively.

Running Time: B is size O(n3) and computing each element of B requires time O(n3) for a total
time of O(n6).

12. Scheduling: Suppose you have one machine and n jobs, a1, ..., an. Each job aj has processing
time tj , profit pj , and deadline dj . The machine can only process one job at a time and that job
must run uninterruptedly until completion. If job aj is completed by deadline dj , you receive profit
pj , but if it is completed after, you receive nothing. Assuming all processing times are integers
between 1 and n and dj ≥ tj for all jobs, give an algorithm for computing the maximum profit you
can make.

Solution:

Recursion Relation: We first order the jobs by increasing deadline so a1, ..., an are ordered by
deadline. We then recurse on P (i, j), the maximum profit we can make using jobs 1...i in time j.
The relation is:

P (i, j) =

 0 if i = 0
max(P (i− 1, j), P (i− 1, j − ti) + pi) if j ≤ di
P (i− 1, j) else

(12)

Running Time: Since all processing times are no more than n, we need only compute j to n2.
Therefore, P is size O(n3). Filling in each square of P requires O(1) time for a total running time
of O(n3). Note that the O(n log n) sorting cost has been absorbed.

5

13. Bitonic Tours: You are given a set of points (xi, yi) in a two dimensional plane. You start at
the point with the lowest x coordinate and must move strictly right until you reach the point with
the highest x coordinate, after which you must move strictly left until you return to the starting
point. Give an algorithm for determining the shortest distance you can travel.

Solution:

Recursion Relation: We first order the points p1 = (x1, y1), ..., pn = (xn, yn) by increasing x
coordinate. We then iterate over D(i, j) with i < j, where D(i, j) is the length of the optimal
bitonic path containing all points less than pi. This path begins at pi, goes strictly left until it
reaches p1 and then goes strictly right until reaches pj . Let |pi − pj | be the Euclidean distance
between points i and j. The recursion is:

D(i, j) =

{
|p1 − p2| if i = 1 and j = 2

min(D(i, j − 1) + |pj − pj−1|, D(j, j − 1) + |pj−1 − pj+1|+
∑i

k=j+1 |pk − pk+1|) else

(13)
The minimum tour is minj<n D(n, j) + |pn − pj |.
Intuitively, either j − 1 is the point before j on the path from 1 to j or it is on the path from i to
1. You can (and should) prove correctness formally by induction.

Running Time: D is size n2. If we precompute
∑i

k=j+1 |pk − pk+1| for all i and j in O(n2) time,

we can compute each entry of D in constant time for a total running time of O(n2).

6

