RECITATION 2

09/16

PLAN:

- 1. CORRECTNESS & COMPLEXITY OF O(n logn) ALGORITHM
- 2.

O(n)

- 3. ANOTHER O(n) ALGORITHM
- 4 COUMER EXAMPLE I
- 5. COUNTERBYAMPLE I

ALGORITHM 1: O(n logn)

Slightly different

	3	5	3	5	7
	7	4	7	2	8
A=	15	3	3	3)
	11	1	7	(12)	2
	8	11	i	5	2
ma)	X	V	\bigvee	V	\bigvee

- 1. CONSIDER PROJECTION A'
 WHERE EACH ENTRY IS
 THE MAXIMUM OF THE
 CORRESPONDING COLUMN OF A
- 2. FIND DAY 1D-PEAK IN AT USING O(log n) ALG
- A'= 15 11 7 12 8
- FIND ITS OCCURRENCE IN THE CORRESPONDING COLUMN OF A

IT MUST BE A 2D-PEAK.
WHY?

COMPUTING A' EXPLICITLY: $\Theta(n^2)$ TIME \leftarrow TOO MUCH

COMPUTING A SINGLE ENTRY OF A!: $\Theta(n)$ TIME

1D-PEAK LOCATOR ONLY LOOKS AT $O(m \log n)$ ENTRIES OF A!

IT SUFFICES TO COMPUTE THEM! $O(n \log n)$

TOTAL COMPUTATION TIME

WANT TO PROVE BY INDUCTION A STRONGER STATEMENT:

THE ALGORITHM FINDS A 2D-PEAK

THAT IS > ANYTHING ON THE BOUNDARY

(3) -> (LEARLY WORKS FOR SMALL MATRICES

- FOR LARGE ONES:

THE PEAK MUST BE GREATER THAN

ANYTHING AROUND SO IS

A 2D-PEAK IN THE ENTIRE MATRIX

TIME COMPLEXITY T(n,m):

$$T(n,m) = O(n+m) + T(n/2, m/2)$$

$$= O(n+m) + O(\frac{n+m}{2}) + O(\frac{n+m}{4}) + \cdots + O(1)$$
GEOMETRIC SEQUENCE
$$= O(n+m)$$

4

ALGORITHM 3: O(n) IN EXPECTATION

RECALL: GREEDILY ASCENDING CANTAKE SZ(N2) TIME

IS THERE A WAY TO FIX IT?

IDEA 1: START FROM A RANDOM LOCATION

-> CAN STILL TAKE SZ(12) TIME MOST OF THE TIME

IDEA 2: PICK N RANDOM LOCATIONS

- · FIND THEIR MAXIMUM
- · GREEDILY ASCEND FROM THERE

INTUITION: IF THERE IS A VERY LONG (R(2))
INCREASING PATH, VERY LIKELY TO
DRAW A LOCATION WITHIN THE LAST
O(n) LOCATIONS
U U U U

(5) ANALYSIS:

> CONSIDER THE SORTED SEQUENCE OF ALL
THE NUMBERS:

 $a_1 \leqslant a_2 \leqslant \ldots \leqslant a_{n^2-2} \leqslant a_{n^2-1} \leqslant a_{h^2}$

> IF THE LOCATION CONTAINING Q; IS SELECTED

THEN CAN ASCEND FOR AT MOST

N^2-i STEPS

-) PROBABILITY ASCENDS FOR > STEPS

(NO NUMBER IN α_{n^2-s+1} ... α_{n^2} SELECTED

DOENT BELONG TO {n2-s+1,...,n2}

 $\left\langle \left(1-\frac{s}{n^2}\right)^N\right\rangle = e^{-\frac{s}{n^2}\cdot n} = e^{-s/n}$

> EXPECTED NUMBER OF STEPS

{ Zin. Pr[walks for (i-1/n+1... in steps]

 $\leq n + \sum_{i=2}^{n} in \cdot Pr[walks for > (i-l)nsteps]$

 $\left\langle n + n \cdot \sum_{i=2}^{n} e^{-(i-1)} \right\rangle = O(n)$

6

HOW ABOUT 3 DIMENSIONS?

CAN GENERALIZE THE ALGORITHMS AS FOLLOWS

AL GORITHM 1:

 $O(n^2 \log n) \leftarrow PROJECT INTO 1D$

ALGORITHM 2:

 $O(n^2) \leftarrow PROJECT INTO 2D$

ALGORITHM 3:

O(n 1.5)

START FROM THE

BEST OUT OF

1.5 RANDOM

LOCATIONS

COUNTEREXAMPLE I

CAN USE ANY PEAR INSTEAD OF THE HIGHEST PEAK FOR COLUMNS IN ALGORITHM 12

NO:

THERE MAY BE ONLY ONE PEAK
AND WE DON'T LEARN IN WHICH HALF
IT LIES, SO WE CAN'T RECURSE

(OUNTEREXAMPLE II

QUESTION: ALGORITHM 2 LOOKS AT 3 COLUMNS & 3 ROWS:

IS IT POSSIBLE TO LOOK AT JUST ONE ROW & ONE COLUMN

AND RECURSE BASED ON THEM?

ANSWER: NO. CAN RECURSE ON A SQUARE THAT HAS NO 2D-PEAK IN THE ENTIRE ARRAY, EVEN THOUGH HAS A 2D-PEAK FOR A SUB ARRAY

- GRADIENT

PSET I SHOWS HOW TO FIX THIS SOLUTION