Lecture 21: Dynamic Programming IV: Piano Fingering, Structural DP (Trees), Vertex Cover, Dominating Set, Treewidth

Lecture Overview

• Piano Fingering
• Structural DP (trees)
• Vertex Cover & Dominating Set in trees
• Beyond trees: treewidth

Readings

CLRS 15

Review:

5 easy steps for DP

1. subproblems (define & count)
2. guessing (what & count)
3. relation (the true test of successful subproblem definition)
4. DP (put pieces together)
5. recover solution to original problem

* 2 kinds of guessing:

in 3: guess which other subproblems to use (used by every DP except Fibonacci)

in 1: add more structure to the subproblem definition, if the obvious subproblems do not result in a useful recursion (used by knapsack DP)

• effectively keep track of many solutions to the subproblem; e.g., in the knapsack problem we kept track of the best knapsacks of various sizes using items i, \ldots, n;
• informs parent subproblem about features of the solution.
Piano fingering:

[Parncutt, Sloboda, Clarke, Rackallio, Desain, 1997]
[Hart, Bosch, Tsai 2000]
[Al Kasimi, Nichols, Raphael 2007] etc.

- given musical piece to play, say sequence of (single) notes with right hand
- metric \(d(f,p,g,q) \) of difficulty going from note \(p \) with finger \(f \) to note \(q \) with finger \(g \)

 e.g., \(1 < f < g \) & \(p > q \) \(\implies \) uncomfortable
 stretch rule: \(p \ll q \) \(\implies \) uncomfortable
 legato (smooth) \(\implies \) \(\infty \) if \(f = g \)
 weak-finger rule: prefer to avoid \(g \in \{4,5\} \)
 \(3 \rightarrow 4 \) & \(4 \rightarrow 3 \) annoying \(\sim \) etc.

First Attempt:
1. subproblem = min difficulty for suffix notes\([i:]\)
2. guessing = finger \(f \) for first note\([i]\)
3. \(\text{DP}[i] = \min \left(\text{DP}[i+1] + d(\text{note}[i], f, \text{note}[i+1], g) \right) \)
 \(\rightarrow \) not enough information

Second Attempt, enriching the subproblems we keep track of:
1. subproblem \(\text{DP}[i, f] = \min \) difficulty for suffix note\([i:]\) given finger \(f \) on note\([i]\)
2. guessing = finger \(g \) for next note\([i+1]\)
3. \(\text{DP}[i, f] = \min_{g \in \text{range}(F)} (\text{DP}[i+1, g] + d(\text{note}[i], f, \text{note}[i+1], g)) \)
 \(\leftarrow \#\) fingers = 5 for humans
 \(\text{DP}[n, f] = 0 \)
4. \(F^n \) subproblems, \(F \) choices per subproblem \(\implies O(F^2n) \) time
5. recovering original solution: \(\min_{f \in \text{range}(F)} (\text{DP}[\emptyset, f]) \)
Structural DP:

Follow combinatorial structure of the problem, usually richer than mere subsequences.
* for DP on trees, useful subproblem is subtree rooted at vertex v, for all v

Figure 1: DP on Trees.

Vertex Cover:

Find minimum set of vertices (cover) such that every edge is covered on at least 1 end

Figure 2: Vertex Cover of Petersen’s Graph.

- NP-complete\(^1\) in general graphs
- polynomial time for trees:
 1. subproblem = min. cover for subtree rooted at v
 $\implies n$ subproblems
 2. guessing = is v in cover?
 - $\implies 2$ choices

\(^1\)Recall from last lecture that NP-complete problems is a family of problems which are all equivalent to each other and for which no polynomial-time algorithm is known. Most computer scientists believe that no efficient algorithm exists for these problems, but showing this is beyond the power of current techniques. More on NP-completeness later in the term.
Figure 3: Vertex Cover.

- YES \implies children edges already covered :-)
 \implies left with children subtrees
- NO \implies all children must be in cover otherwise the edges adjacent to \(v \) will not be covered
 \implies left with grandchildren subtrees

3. \(DP[v] = \min(1 + \sum(DP[c] \text{ for } c \in \text{children}[v]), \text{YES CASE}) \)
 \#children of \(v \) + \sum(DP[g] \text{ for } g \in \text{grandchildren}(v)) \text{ NO CASE}

4. time = \(O(\sum \text{deg}(v)) = O(E) = O(n) \) (because the edges going out of node \(v \) are “explored” at most twice by the recursion: once for computing \(DP[v] \), and once for computing \(DP[\text{father}[v]] \))

5. solution to the original problem: \(DP[\text{root}] \)

Dominating set:

Find minimum set of vertices such that every vertex is in or adjacent to set
- again NP-complete in general graphs, polynomial time on trees.

Figure 4: Dominating Set in Petersen’s Graph.
1. subproblem = min. dom. for subtree rooted at \(v \)

2. guessing = is \(v \) in dom. set?
 - YES \(\implies \) children become already dominated! :-)
 - NO \(\implies \) must put at least one child in dom. set, otherwise \(v \) won’t be dominated
 \(\implies \) on the positive side, the chosen child’s children will be automatically dominated

3. Let us try to write down a structural DP recursion for this problem:

 In the YES CASE: we have to pay 1 for choosing \(v \) and then
 - sum up the solutions for all the children — too pessimistic because the children are already dominated...
 - sum up the solutions for all the grandchildren — too pessimistic, because it is possible that the best solution for the subtrees rooted at the children of \(v \) involves choosing some of the children even though the children do not need to be dominated...

 This discussion leads us to enrich the set of subproblems as follows:
 \[
 \text{DP}(v) = \text{min. dom. set for subtree rooted at } v
 \]
 \[
 \text{DP}'(v) = \text{min. dom. set for subtree rooted at } v \text{ with no requirement of dominating } v
 \implies 2n \text{ subproblems total}
 \]

4. Now we can write down the following recursive formula for DP (see Figure 5).

 \[
 \text{DP}[v] = \min(1 + \sum(\text{DP}'[c] \text{ for } c \text{ in children}[v]), \text{YES CASE})
 \]
 \[
 \min_{d \in \text{children}[v]} \{1 + \sum(\text{DP}'(g) \text{ for } g \text{ in children}[d]) + \sum(\text{DP}[c] \text{ for } c \neq d \text{ in children}[v])\} \text{ \ NO CASE}
 \]

Figure 5: Structure of the Dynamic Programming Solution for Dominating Set in Trees.
5. Recursion for DP:\':
\[DP'[v] = \min(1 + \sum (DP'[c] \text{ for } c \text{ in children}[v]), \text{ YES CASE} \sum (DP[c] \text{ for } c \text{ in children}[v]), \text{ NO CASE})\]

6. time = \(O(\sum \text{deg}(v)) = O(E) = O(n)\) (justification similar to that in the vertex cover problem)

7. solution to original problem DP[root]

Beyond Trees — You are not responsible for this material.

Treewidth:

Many graphs are “thick trees” with reasonable “thickness” (~ 7 e.g.).

- Most problems that are NP-complete in general can be solved in such graphs via DP

![Figure 6: A graph (top) and its tree decomposition (bottom). The treewidth is 3.](image-url)