
Lecture 21 Dynamic Programming IV of IV 6.006 Fall 2009

Lecture 21: Dynamic Programming IV: Piano
Fingering, Structural DP (Trees), Vertex Cover,

Dominating Set, Treewidth

Lecture Overview

• Piano Fingering

• Structural DP (trees)

• Vertex Cover & Dominating Set in trees

• Beyond trees: treewidth

Readings

CLRS 15

Review:

5 easy steps for DP

1. subproblems (define & count)

2. guessing (what & count)

3. relation (the true test of successful subproblem definition)

4. DP (put pieces together)

5. recover solution to original problem

* 2 kinds of guessing:

in 3: guess which other subproblems to use (used by every DP except Fibonacci)

in 1: add more structure to the subproblem definition, if the obvious subproblems do not
result in a useful recursion (used by knapsack DP)

• effectively keep track of many solutions to the subproblem; e.g., in the knapsack
problem we kept track of the best knapsacks of various sizes using items i, . . . , n;

• informs parent subproblem about features of the solution.

1

Lecture 21 Dynamic Programming IV of IV 6.006 Fall 2009

Piano fingering:

[Parncutt, Sloboda, Clarke, Raekallio, Desain, 1997]
[Hart, Bosch, Tsai 2000]
[Al Kasimi, Nichols, Raphael 2007] etc.

• given musical piece to play, say sequence of (single) notes with right hand

• metric d(f, p, g, q) of difficulty going from note p with finger f to note q with finger g

e.g., 1 < f < g & p > q =⇒ uncomfortable
stretch rule: p� q =⇒ uncomfortable
legato (smooth) =⇒ ∞ if f = g

weak-finger rule: prefer to avoid g ε {4, 5}
3→ 4 & 4→ 3 annoying ∼ etc.

First Attempt:

1. subproblem = min. difficulty for suffix notes[i :]

2. guessing = finger f for first note[i]

3. DP[i] = min(DP[i+ 1] + d(note[i], f, note[i+ 1], ?) for f · · ·)
→ not enough information

Second Attempt, enriching the subproblems we keep track of:

1. subproblem DP[i, f] = min difficulty for suffix note[i :] given finger f on note[i]

2. guessing = finger g for next note[i+ 1]

3. DP[i, f] = ming ε range(F)(DP[i+ 1, g] + d(note[i], f, note[i+ 1], g))
←] fingers = 5 for humans
DP[n, f] = ∅

4. Fn subproblems, F choices per subproblem =⇒ O(F 2n) time

5. recovering original solution: minf in range(F)(DP[∅, f])

2

Lecture 21 Dynamic Programming IV of IV 6.006 Fall 2009

Structural DP:

Follow combinatorial structure of the problem, usually richer than mere subsequences.
* for DP on trees, useful subproblem is subtree rooted at vertex v, for all v

Figure 1: DP on Trees.

Vertex Cover:

Find minimum set of vertices (cover) such that every edge is covered on at least 1 end

Figure 2: Vertex Cover of Petersen’s Graph.

• NP-complete1 in general graphs

• polynomial time for trees:

1. subproblem = min. cover for subtree rooted at v
=⇒ n subproblems

2. guessing = is v in cover?

– =⇒ 2 choices
1Recall from last lecture that NP-complete problems is a family of problems which are all equivalent to

each other and for which no polynomial-time algorithm is known. Most computer scientists believe that no
efficient algorithm exists for these problems, but showing this is beyond the power of current techniques.
More on NP-completeness later in the term.

3

Lecture 21 Dynamic Programming IV of IV 6.006 Fall 2009

YES

NO

v

Figure 3: Vertex Cover.

– YES =⇒ children edges already covered :-)
=⇒ left with children subtrees

– NO =⇒ all children must be in cover otherwise the edges adjacent to v will
not be covered

=⇒ left with grandchildren subtrees

3. DP[v] = min(1 + sum(DP[c] for c in children[v]), YES CASE
#children of v + sum(DP[g] for g in grandchildren(v)) NO CASE

4. time = O(
∑
deg(v)) = O(E) = O(n) (because the edges going out of node v are

“explored” at most twice by the recursion: once for computing DP[v], and once
for computing DP[father[v]])

5. solution to the original problem: DP[root]

Dominating set:

Find minimum set of vertices such that every vertex is in or adjacent to set
- again NP-complete in general graphs, polynomial time on trees.

Figure 4: Dominating Set in Petersen’s Graph.

4

Lecture 21 Dynamic Programming IV of IV 6.006 Fall 2009

1. subproblem = min. dom. for subtree rooted at v

2. guessing = is v in dom. set?

• YES =⇒ children become already dominated! :-)

• NO =⇒ must put at least one child in dom. set, otherwise v won’t be dominated
=⇒ on the positive side, the chosen child’s children will be automatically

dominated

3. Let us try to write down a structural DP recursion for this problem:

In the YES CASE: we have to pay 1 for choosing v and then

• sum up the solutions for all the children — too pessimistic because the children
are already dominated...

• sum up the solutions for all the grandchildren — too pessimistic, because it
is possible that the best solution for the subtrees rooted at the children of v
involves choosing some of the children even though the children do not need to
be dominated...

This discussion leads us to enrich the set of subproblems as follows:

DP(v) = min. dom. set for subtree rooted at v

DP′(v) = min. dom. set for subtree rooted at v with no requirement of domi-
nating v

=⇒ 2n subproblems total

4. Now we can write down the following recursive formula for DP (see Figure 5).

DP[v] = min(1 + sum(DP′[c]︸ ︷︷ ︸ for c in children[v], YES CASE

mind∈children[v] {1 + sum(DP′(g) for g in children[d]) + sum(DP[c] for c 6= d in children[v]))})
NO CASE

v

DP′ DP′ DP′

YES

v

d

DPDP

DP′ DP′ DP′

NO

Figure 5: Structure of the Dynamic Programming Solution for Dominating Set in Trees.

5

Lecture 21 Dynamic Programming IV of IV 6.006 Fall 2009

5. Recursion for DP′:
DP′[v] = min(1 + sum(DP′[c] for c in children[v], YES CASE

sum(DP[c] for c in children[v])) NO CASE

6. time = O(
∑
deg(v)) = O(E) = O(n) (justification similar to that in the vertex cover

problem)

7. solution to original problem DP[root]

Beyond Trees —You are not responsible for this material.

Treewidth:

Many graphs are “thick trees” with reasonable “thickness” (∼ 7 e.g.).

• Most problems that are NP-complete in general can be solved in such graphs via DP

Figure 6: A graph (top) and its tree decomposition (bottom). The treewidth is 3.

6

