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Lecture 20: Dynamic Programming I1I: Text
Justification, Knapsack, Pseudopolynomial Time

Lecture Overview

e Review
e Bottom-Up Implementation

Parent Pointers

Text Justification

Knapsack

Pseudopolynomial Time

Readings
CLRS 15

Review:

* DP is all about subproblems & guessing
* 5 easy steps:

(a) define subproblems: count £ subprobs.

(b) relate subproblem solutions, usually by guessing (part of the solution): count
choices

(¢) recurse + memoize

(d) time = # subprobs X time/subprob.
= f subprobs x f guesses/subpr. x overhead for combining solutions

(e) check if original problem = a subproblem or solvable from DP table ( = extra
time)

* for sequences, good subproblems are often prefixes OR suffixes OR, substrings
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Bottom-up implementation of DP (Repetition From Previous Lecture):
Alternative to recursion

e subproblem dependencies form DAG (see Figure —if not, we need a better recursive
formulation of the problem

e imagine topological sorting the dependency graph

e iterate through subproblems in that order
=—> when solving a subproblem, have already solved all dependencies

e often: “solve smaller subproblems first”
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Figure 2: Subproblem Dependency Graph for Fibonacci Numbers.

Example.

Fibonacci:

for k in range(n + 1): fib[k] = - --

Shortest Paths:
for k in range(n): for v in V : d[k,v,t] = ---

Crazy Eights:
for 7 in reversed(range(n)): trick[i] = - --

Longest Common Subsequence:
c(i,j) = length of the LCS(x[i:],y[j:])

Recall Recursive formula:

i) :{ T+c(i+1,5+1), if z[i] = y[j]
’ max{c(i + 1, 7), c(i,j + 1)}, if z[i] # ylj]
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base cases: ¢(| z |,7) =c(i, |y |) =0
Figure [3| shows Bottom-Up Strategies for LCS.
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Figure 3: Subproblem Dependency Structure for Longest Common Subsequence, and differ-
ent Bottom-Up Computation Strategies.

Parent Pointers

- Often straightforward DP returns the wvalue of the optimal solution.
- To find the solution achieving this value, a bit more book-keeping is required.

- It is usually sufficient to remember for each subproblem what guess resulted in the

optimal solution of the subproblem.

- E.g., in the LCS problem it is enough to remember, for all pairs 4, j, the direction
“right”, “down”, or “diagonal” achieving equality in .

- If we have these “pointers”, we can just follow them starting at position (0,0) of the
table to reconstruct the optimal solution.
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Text Justification:
Split text into “good lines”

blah blah blah blah blah
b | a h vs blah blah
reallylongword reallylongword

Figure 4: Good vs. Bad Justification

Mathematically the line justification problem:
e INPUT: Given array of words w0 : n].

e SCORING RULE: Suppose we are considering a line ¢ containing the words w[i] through
wlj]. Define the badness(¢) for the line of words ¢ = w[i : j + 1] to be, e.g.,

+00, if total length(¢) > page width
(page_width - total length(¢))3, otherwise
e GOAL: Split words into lines £1 = w[0 : 1], fo = w[iy : 42}, etc. to min ), badness(¢;).
Subproblem structure:

1. subproblem DP[i]= min badness for suffix words w]i :]
= f subproblems = ©(n) where n = # words

2. guessing = where to end first line, in the optimal justification of words wli : n]
= f choices =n—i+1=0(n)

3. relation:

e DPJ[i] = min(badness(i, j) + DPJ[j] for j in range(i + 1,n + 1))

e DP[n] =10
= time per subproblem = O(n)

4. total time = O(n?)

5. solution = DP[()]
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Knapsack:

Knapsack of size S you want to pack with a subset of n items,
e each item 7 has integer size s; & real value v;

e goal: choose subset of items of maximum total value subject to total size < S

Try all possible subsets of the items = runtime exponential in the number of items.

1. subproblemDPlil —=—walueforsufficfifofitems DOESN'T WORK, see below
2. guessing = whether to include item i = { choices = 2
3. relation:

e DP[i] = max(DP[i+ 1],v; + DP[i + 1] if 5,-<57!)

e not enough information to know whether item ¢ fits - how much space is left?

GUESS!

1. subproblem DPJi, X| = value for suffix [i :] of items, given knapsack of size X
= { subproblems = O(n.S) !

2. guessing: whether to include ¢ or not in the optimal knapsack of size X

3. relation:

e DPli,X]| =max(DP[i+1,X],v; + DP[i + 1, X — s;]ifs; < X)

e DP[n,X|=10
= time per subproblem = O(1)

4. total time = O(nS)

5. solution = DP[}, S]

AMAZING: effectively trying all possible subsets!

Knapsack is in fact NP-complete! = suspect no polynomial-time [| algorithm (polynomial

in length of input).

More on NP-completeness later in the term. For now, NP-complete problems is a family of hard problems
for which no polynomial-time algorithm is known.
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e here input =< 5,50, ,8n_1,00, " ,Up_1 >
e length in binary: O(lg S +1gso+---) =~ O(nlg...)

e s0 O(nS) is not “polynomial-time”, because S is exponential in log S, an it could be
that log S dominates the size of the input

e O(nS) still pretty good if S is small

e “pseudopolynomial time”: polynomial in length of input & integers in the input




