Lecture 20: Dynamic Programming III: Text Justification, Knapsack, Pseudopolynomial Time

Lecture Overview

- Review
- Bottom-Up Implementation
- Parent Pointers
- Text Justification
- Knapsack
- Pseudopolynomial Time

Readings

CLRS 15

Review:

* DP is all about subproblems & guessing
* 5 easy steps:
 (a) define subproblems: count $\#$ subprobs.
 (b) relate subproblem solutions, usually by guessing (part of the solution): count $\#$ choices
 IMPORTANT: check that subproblem solutions are related acyclically—recall the problem with the obvious shortest path recursion in the last lecture!
 (c) recurse + memoize
 (d) time = $\#$ subprobs \times time/subprob.
 = $\#$ subprobs \times $\#$ guesses/subpr. \times overhead for combining solutions
 (e) check if original problem = a subproblem or solvable from DP table (\implies extra time)
* for sequences, good subproblems are often prefixes OR suffixes OR substrings
Bottom-up implementation of DP (Repetition From Previous Lecture):

Alternative to recursion

- subproblem dependencies form DAG (see Figure 1)—if not, we need a better recursive formulation of the problem
- imagine topological sorting the dependency graph
- iterate through subproblems in that order
 \[
 \Rightarrow \text{ when solving a subproblem, have already solved all dependencies}
 \]
- often: “solve smaller subproblems first”

Figure 1: DAG.

Figure 2: Subproblem Dependency Graph for Fibonacci Numbers.

Example.

Fibonacci:

\[
\text{for } k \text{ in range}(n + 1): \text{fib}[k] = \cdots
\]

Shortest Paths:

\[
\text{for } k \text{ in range}(n): \text{for } v \in V: d[k, v, t] = \cdots
\]

Crazy Eights:

\[
\text{for } i \text{ in reversed(range}(n)): \text{trick}[i] = \cdots
\]

Longest Common Subsequence:

\[
c(i, j) = \text{length of the LCS}(x[i:], y[j:])
\]

Recall Recursive formula:

\[
c(i, j) = \begin{cases}
1 + c(i + 1, j + 1), & \text{if } x[i] = y[j] \\
\max\{c(i + 1, j), c(i, j + 1)\}, & \text{if } x[i] \neq y[j]
\end{cases}
\]
base cases: $c(\mid x \mid, j) = c(i, \mid y \mid) = \emptyset$

Figure 3 shows Bottom-Up Strategies for LCS.

![Figure 3: Subproblem Dependency Structure for Longest Common Subsequence, and different Bottom-Up Computation Strategies.](image)

Parent Pointers

- Often straightforward DP returns the *value* of the optimal solution.
- To find the solution achieving this value, a bit more book-keeping is required.
- It is usually sufficient to remember for each subproblem what guess resulted in the optimal solution of the subproblem.
- E.g., in the LCS problem it is enough to remember, for all pairs i, j, the direction “right”, “down”, or “diagonal” achieving equality in $c(i, j)$.
- If we have these “pointers”, we can just follow them starting at position $(0,0)$ of the table to reconstruct the optimal solution.
Text Justification:

Split text into “good lines”

- obvious (MS Word/Open Office) algorithm: put as many words fit on first line, repeat
- but this can make very bad lines

\[
\begin{align*}
\text{blah blah blah} & \quad \text{blah blah} \\
\text{really long word} & \quad \text{really long word}
\end{align*}
\]

Figure 4: Good vs. Bad Justification

Mathematically the line justification problem:

- INPUT: Given array of words \(w[0 : n] \).
- SCORING RULE: Suppose we are considering a line \(\ell \) containing the words \(w[i] \) through \(w[j] \). Define the badness \((\ell) \) for the line of words \(\ell \equiv w[i : j + 1] \) to be, e.g.,

\[
\begin{cases}
+\infty, & \text{if } \text{total length}(\ell) > \text{page width} \\
(\text{page width} - \text{total length}(\ell))^3, & \text{otherwise}
\end{cases}
\]

- GOAL: Split words into lines \(\ell_1 = w[0 : i_1], \ell_2 = w[i_1 : i_2] \), etc. to minimize \(\sum_i \text{badness}(\ell_i) \).

Subproblem structure:

1. subproblem \(\text{DP}[i] = \text{min badness for suffix words } w[i:] \)
 \(\implies \) \# subproblems = \(\Theta(n) \) where \(n = \# \) words

2. guessing = where to end first line, in the optimal justification of words \(w[i : n] \)
 \(\implies \) \# choices = \(n - i + 1 = O(n) \)

3. relation:
 - \(\text{DP}[i] = \text{min}(\text{badness}(i, j) + \text{DP}[j] \text{ for } j \text{ in range}(i + 1, n + 1)) \)
 - \(\text{DP}[n] = \emptyset \)
 \(\implies \) time per subproblem = \(O(n) \)

4. total time = \(O(n^2) \)

5. solution = \(\text{DP}[\emptyset] \)
 \((& \text{ use parent pointers to recover split}) \)
Knapsack:

Knapsack of size S you want to pack with a subset of n items,

- each item i has integer size s_i & real value v_i
- goal: choose subset of items of maximum total value subject to total size $\leq S$

Trivial Algorithm:

Try all possible subsets of the items \implies runtime exponential in the number of items.

First Attempt:

1. subproblem $DP[i] =$ value for suffix $[i:]$ of items DOESN’T WORK, see below
2. guessing = whether to include item $i \implies$ ♯ choices $= 2$
3. relation:
 - $DP[i] = \max(DP[i+1], v_i + DP[i+1] \text{ if } s_i \leq S)$!
 - not enough information to know whether item i fits - how much space is left? GUESS!

Second Attempt, keeping more info:

1. subproblem $DP[i, X] =$ value for suffix $[i:]$ of items, given knapsack of size X
 \implies ♯ subproblems $= O(nS)$!
2. guessing: whether to include i or not in the optimal knapsack of size X
3. relation:
 - $DP[i, X] = \max(DP[i+1, X], v_i + DP[i+1, X - s_i] \text{ if } s_i \leq X)$
 - $DP[n, X] = \emptyset$
 \implies time per subproblem $= O(1)$
4. total time $= O(nS)$
5. solution = $DP[\emptyset, S]$
 (& use parent pointers to recover subset)
 AMAZING: effectively trying all possible subsets!

Knapsack is in fact NP-complete! \implies suspect no polynomial-time algorithm (polynomial
in length of input).

1More on NP-completeness later in the term. For now, NP-complete problems is a family of hard problems
for which no polynomial-time algorithm is known.
Why isn’t the above algorithm polynomial time?

- here input = \(<S, s_0, \cdots, s_{n-1}, v_0, \cdots, v_{n-1}> \)

- length in binary: \(O(\lg S + \lg s_0 + \cdots) \approx O(n \lg \ldots) \)

- so \(O(nS) \) is not “polynomial-time”, because \(S \) is exponential in \(\log S \), an it could be that \(\log S \) dominates the size of the input

- \(O(nS) \) still pretty good if \(S \) is small

- “pseudopolynomial time”: polynomial in length of input & integers in the input

Remember:

- polynomial - GOOD
- exponential - BAD
- pseudopoly - SO SO