Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Lecture 20: Dynamic Programming I1I: Text
Justification, Knapsack, Pseudopolynomial Time

Lecture Overview

e Review
e Bottom-Up Implementation

Parent Pointers

Text Justification

Knapsack

Pseudopolynomial Time

Readings
CLRS 15

Review:

* DP is all about subproblems & guessing
* 5 easy steps:

(a) define subproblems: count £ subprobs.

(b) relate subproblem solutions, usually by guessing (part of the solution): count
choices

(¢) recurse + memoize

(d) time = # subprobs X time/subprob.
= f subprobs x f guesses/subpr. x overhead for combining solutions

(e) check if original problem = a subproblem or solvable from DP table (= extra
time)

* for sequences, good subproblems are often prefixes OR suffixes OR, substrings

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Bottom-up implementation of DP (Repetition From Previous Lecture):
Alternative to recursion

e subproblem dependencies form DAG (see Figure —if not, we need a better recursive
formulation of the problem

e imagine topological sorting the dependency graph

e iterate through subproblems in that order
=—> when solving a subproblem, have already solved all dependencies

e often: “solve smaller subproblems first”

SR
A

- @ EREEEE ®

Figure 2: Subproblem Dependency Graph for Fibonacci Numbers.

Example.

Fibonacci:

for k in range(n + 1): fib[k] = - --

Shortest Paths:
for k in range(n): for v in V : d[k,v,t] = ---

Crazy Eights:
for 7 in reversed(range(n)): trick[i] = - --

Longest Common Subsequence:
c(i,j) = length of the LCS(x[i:],y[j:])

Recall Recursive formula:

i) :{ T+c(i+1,5+1), if z[i] = y[j]
’ max{c(i + 1, 7), c(i,j + 1)}, if z[i] # ylj]

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

base cases: ¢(| z |,7) =c(i, |y |) =0
Figure [3| shows Bottom-Up Strategies for LCS.

) L7 et
clit1,4+1] 7\&“ «ti =l

[z[{0 0 0 00 || 0 0 0 0 0
0 [y 0 [yl
0 ol @
0 0
0 0
I — g9 lzll0 0 0 0 Z

Figure 3: Subproblem Dependency Structure for Longest Common Subsequence, and differ-
ent Bottom-Up Computation Strategies.

Parent Pointers

- Often straightforward DP returns the wvalue of the optimal solution.
- To find the solution achieving this value, a bit more book-keeping is required.

- It is usually sufficient to remember for each subproblem what guess resulted in the

optimal solution of the subproblem.

- E.g., in the LCS problem it is enough to remember, for all pairs 4, j, the direction
“right”, “down”, or “diagonal” achieving equality in .

- If we have these “pointers”, we can just follow them starting at position (0,0) of the
table to reconstruct the optimal solution.

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Text Justification:
Split text into “good lines”

blah blah blah blah blah
b | a h vs blah blah
reallylongword reallylongword

Figure 4: Good vs. Bad Justification

Mathematically the line justification problem:
e INPUT: Given array of words w0 : n].

e SCORING RULE: Suppose we are considering a line ¢ containing the words w[i] through
wlj]. Define the badness(¢) for the line of words ¢ = w[i : j + 1] to be, e.g.,

+00, if total length(¢) > page width
(page_width - total length(¢))3, otherwise
e GOAL: Split words into lines £1 = w[0 : 1], fo = w[iy : 42}, etc. to min), badness(¢;).
Subproblem structure:

1. subproblem DP[i]= min badness for suffix words w]i :]
= f subproblems = ©(n) where n = # words

2. guessing = where to end first line, in the optimal justification of words wli : n]
= f choices =n—i+1=0(n)

3. relation:

e DPJ[i] = min(badness(i, j) + DPJ[j] for j in range(i + 1,n + 1))

e DP[n] =10
= time per subproblem = O(n)

4. total time = O(n?)

5. solution = DP[()]

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Knapsack:

Knapsack of size S you want to pack with a subset of n items,
e each item 7 has integer size s; & real value v;

e goal: choose subset of items of maximum total value subject to total size < S

Try all possible subsets of the items = runtime exponential in the number of items.

1. subproblemDPlil —=—walueforsufficfifofitems DOESN'T WORK, see below
2. guessing = whether to include item i = { choices = 2
3. relation:

e DP[i] = max(DP[i+ 1],v; + DP[i + 1] if 5,-<57!)

e not enough information to know whether item ¢ fits - how much space is left?

GUESS!

1. subproblem DPJi, X| = value for suffix [i :] of items, given knapsack of size X
= { subproblems = O(n.S) !

2. guessing: whether to include ¢ or not in the optimal knapsack of size X

3. relation:

e DPli,X]| =max(DP[i+1,X],v; + DP[i + 1, X — s;]ifs; < X)

e DP[n,X|=10
= time per subproblem = O(1)

4. total time = O(nS)

5. solution = DP[}, S]

AMAZING: effectively trying all possible subsets!

Knapsack is in fact NP-complete! = suspect no polynomial-time [| algorithm (polynomial

in length of input).

More on NP-completeness later in the term. For now, NP-complete problems is a family of hard problems
for which no polynomial-time algorithm is known.

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

e here input =< 5,50, ,8n_1,00, " ,Up_1 >
e length in binary: O(lg S +1gso+---) =~ O(nlg...)

e s0 O(nS) is not “polynomial-time”, because S is exponential in log S, an it could be
that log S dominates the size of the input

e O(nS) still pretty good if S is small

e “pseudopolynomial time”: polynomial in length of input & integers in the input

