Lecture 20: Dynamic Programming III: Text Justification, Knapsack, Pseudopolynomial Time

Lecture Overview

- Review
- Bottom-Up Implementation
- Parent Pointers
- Text Justification
- Knapsack
- Pseudopolynomial Time

Readings

CLRS 15

Review:

- * DP is all about subproblems & guessing
- * 5 easy steps:
 - (a) define subproblems: count # subprobs.
 - (b) relate subproblem solutions, usually by guessing (part of the solution): count \sharp choices
 - IMPORTANT: check that subproblem solutions are related acyclically—recall the problem with the obvious shortest path recursion in the last lecture!
 - (c) recurse + memoize
 - (d) time = \sharp subprobs \times time/subprob.
 - $= \sharp$ subprobs $\times \sharp$ guesses/subpr. \times overhead for combining solutions
 - (e) check if original problem = a subproblem or solvable from DP table (\Longrightarrow extra time)
- * for sequences, good subproblems are often prefixes OR suffixes OR substrings

Bottom-up implementation of DP (Repetition From Previous Lecture):

Alternative to recursion

- subproblem dependencies form DAG (see Figure 4)—if not, we need a better recursive formulation of the problem
- imagine topological sorting the dependency graph
- iterate through subproblems in that order
 when solving a subproblem, have already solved all dependencies
- often: "solve smaller subproblems first"

Figure 1: DAG.

Figure 2: Subproblem Dependency Graph for Fibonacci Numbers.

Example.

Fibonacci:

for k in range(n+1): fib $[k] = \cdots$

Shortest Paths:

for k in range(n): for v in $V: d[k, v, t] = \cdots$

Crazy Eights:

for i in reversed(range(n)): trick[i] = \cdots

Longest Common Subsequence:

c(i,j) = length of the LCS(x[i:],y[j:])

Recall Recursive formula:

$$c(i,j) = \begin{cases} 1 + c(i+1,j+1), & \text{if } x[i] = y[j] \\ \max\{c(i+1,j), c(i,j+1)\}, & \text{if } x[i] \neq y[j] \end{cases}$$
 (1)

base cases: $c(\mid x\mid,j)=c(i,\mid y\mid)=\emptyset$ Figure 3 shows Bottom-Up Strategies for LCS.

Figure 3: Subproblem Dependency Structure for Longest Common Subsequence, and different Bottom-Up Computation Strategies.

Parent Pointers

- Often straightforward DP returns the value of the optimal solution.
- To find the solution achieving this value, a bit more book-keeping is required.
- It is usually sufficient to remember for each subproblem what guess resulted in the optimal solution of the subproblem.
- E.g., in the LCS problem it is enough to remember, for all pairs i, j, the direction "right", "down", or "diagonal" achieving equality in (1).
- If we have these "pointers", we can just follow them starting at position (0,0) of the table to reconstruct the optimal solution.

Text Justification:

Split text into "good lines"

- obvious (MS Word/Open Office) algorithm: put as many words fit on first line, repeat
- but this can make very bad lines

```
blah blah blah blah

∴ b l a h vs. blah blah

reallylongword reallylongword
```

Figure 4: Good vs. Bad Justification

Mathematically the line justification problem:

- INPUT: Given array of words w[0:n].
- SCORING RULE: Suppose we are considering a line ℓ containing the words w[i] through w[j]. Define the <u>badness</u>(ℓ) for the line of words $\ell \equiv w[i:j+1]$ to be, e.g.,

$$\begin{cases} +\infty, & \text{if } \operatorname{total_length}(\ell) > \operatorname{page_width} \\ (\operatorname{page_width} - \operatorname{total_length}(\ell))^3, & \text{otherwise} \end{cases}$$

• Goal: Split words into lines $\ell_1 = w[0:i_1], \ell_2 = w[i_1:i_2],$ etc. to min $\sum_i \text{badness}(\ell_i)$.

Subproblem structure:

- 1. subproblem $\mathrm{DP}[i] = \min$ badness for suffix words $w[i:] \implies \sharp$ subproblems $= \Theta(n)$ where $n = \sharp$ words
- 2. guessing = where to end first line, in the optimal justification of words w[i:n] $\implies \sharp \text{ choices} = n i + 1 = O(n)$
- 3. relation:
 - DP[i] = min(badness(i, j) + DP[j]for j in range(i + 1, n + 1)
 - $DP[n] = \emptyset$ \implies time per subproblem = O(n)
- 4. total time = $O(n^2)$
- 5. solution = DP[∅](& use parent pointers to recover split)

Knapsack:

Knapsack of size S you want to pack with a subset of n items,

- each item i has integer size s_i & real value v_i
- goal: choose subset of items of maximum total value subject to total size $\leq S$

Trivial Algorithm:

Try all possible subsets of the items \implies runtime exponential in the number of items.

First Attempt:

- 1. subproblem DP[i] = value for suffix [i:] of items DOESN'T WORK, see below
- 2. guessing = whether to include item $i \implies \sharp \text{ choices} = 2$
- 3. relation:
 - $DP[i] = \max(DP[i+1], v_i + DP[i+1] \text{ if } s_i \leq S?!)$
 - not enough information to know whether item i fits how much space is left? GUESS!

Second Attempt, keeping more info:

- 1. subproblem $DP[i, X] = \text{value for suffix } [i:] \text{ of items, } \underline{\text{given}} \text{ knapsack of size } X \implies \sharp \text{ subproblems} = O(nS)$
- 2. guessing: whether to include i or not in the optimal knapsack of size X
- 3. relation:
 - $DP[i, X] = \max(DP[i+1, X], v_i + DP[i+1, X s_i] \text{ if } s_i \le X)$
 - $DP[n, X] = \emptyset$ \implies time per subproblem = O(1)
- 4. total time = O(nS)
- 5. solution = $DP[\emptyset, S]$

(& use parent pointers to recover subset)

AMAZING: effectively trying all possible subsets!

Knapsack is in fact NP-complete! \implies suspect no <u>polynomial-time</u> ¹ algorithm (polynomial in length of input).

¹More on NP-completeness later in the term. For now, NP-complete problems is a family of hard problems for which no polynomial-time algorithm is known.

Why isn't the above algorithm polynomial time?

- here input = $\langle S, s_0, \dots, s_{n-1}, v_0, \dots, v_{n-1} \rangle$
- length in binary: $O(\lg S + \lg s_0 + \cdots) \approx O(n \lg \ldots)$
- so O(nS) is not "polynomial-time", because S is exponential in $\log S$, an it could be that $\log S$ dominates the size of the input
- O(nS) still pretty good if S is small
- \bullet "pseudopolynomial time": polynomial in length of input & integers in the input

Remember:

polynomial - GOOD exponential - BAD

pseudopoly - SO SO