
Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Lecture 20: Dynamic Programming III: Text
Justification, Knapsack, Pseudopolynomial Time

Lecture Overview

• Review

• Bottom-Up Implementation

• Parent Pointers

• Text Justification

• Knapsack

• Pseudopolynomial Time

Readings

CLRS 15

Review:

* DP is all about subproblems & guessing

* 5 easy steps:

(a) define subproblems: count] subprobs.

(b) relate subproblem solutions, usually by guessing (part of the solution): count]

choices
IMPORTANT: check that subproblem solutions are related acyclically—recall the
problem with the obvious shortest path recursion in the last lecture!

(c) recurse + memoize

(d) time =] subprobs × time/subprob.
=] subprobs ×] guesses/subpr. × overhead for combining solutions

(e) check if original problem = a subproblem or solvable from DP table (=⇒ extra
time)

* for sequences, good subproblems are often prefixes OR suffixes OR substrings

1

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Bottom-up implementation of DP (Repetition From Previous Lecture):

Alternative to recursion

• subproblem dependencies form DAG (see Figure 4)—if not, we need a better recursive
formulation of the problem

• imagine topological sorting the dependency graph

• iterate through subproblems in that order
=⇒ when solving a subproblem, have already solved all dependencies

• often: “solve smaller subproblems first”

Figure 1: DAG.

F0F1F2F3F4F5F6F7…

Figure 2: Subproblem Dependency Graph for Fibonacci Numbers.

Example.

Fibonacci:
for k in range(n + 1): fib[k] = · · ·

Shortest Paths:
for k in range(n): for v in V : d[k, v, t] = · · ·

Crazy Eights:
for i in reversed(range(n)): trick[i] = · · ·

Longest Common Subsequence:
c(i,j) = length of the LCS(x[i:],y[j:])
Recall Recursive formula:

c(i, j) =

{
1 + c(i + 1, j + 1), if x[i] = y[j]

max{c(i + 1, j), c(i, j + 1)}, if x[i] 6= y[j]
(1)

2

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

base cases: c(| x |, j) = c(i, | y |) = ∅
Figure 3 shows Bottom-Up Strategies for LCS.

∅
∅

|x|

|y|

i

j

c[i, j]

c[i + 1, j]

c[i, j + 1]

c[i + 1, j + 1]

∅ ∅ ∅ ∅
∅

∅

∅

∅

∅

if x[i] != y[j]

if x[i] = y[j]

∅
∅

|x|

|y|

∅ ∅ ∅ ∅
∅

∅

∅

∅

∅

…

∅
∅

|x|

|y|

∅ ∅ ∅ ∅
∅

∅

∅

∅

…

∅

∅
∅

|x|

|y|

∅ ∅ ∅ ∅
∅

∅

∅

∅

…

Figure 3: Subproblem Dependency Structure for Longest Common Subsequence, and differ-
ent Bottom-Up Computation Strategies.

Parent Pointers

- Often straightforward DP returns the value of the optimal solution.

- To find the solution achieving this value, a bit more book-keeping is required.

- It is usually sufficient to remember for each subproblem what guess resulted in the
optimal solution of the subproblem.

- E.g., in the LCS problem it is enough to remember, for all pairs i, j, the direction
“right”, “down”, or “diagonal” achieving equality in (1).

- If we have these “pointers”, we can just follow them starting at position (0, 0) of the
table to reconstruct the optimal solution.

3

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Text Justification:

Split text into “good lines”

• obvious (MS Word/Open Office) algorithm: put as many words fit on first line, repeat

• but this can make very bad lines

blah blah blah blah blah
b l a h
reallylongword reallylongword

blah blahvs.. . . .

Figure 4: Good vs. Bad Justification

Mathematically the line justification problem:

• Input: Given array of words w[0 : n].

• Scoring Rule: Suppose we are considering a line ` containing the words w[i] through
w[j]. Define the badness(`) for the line of words ` ≡ w[i : j + 1] to be, e.g.,{

+∞, if total_length(`) > page_width
(page_width - total_length(`))3, otherwise

• Goal: Split words into lines `1 = w[0 : i1], `2 = w[i1 : i2], etc. to min
∑

i badness(`i).

Subproblem structure:

1. subproblem DP[i]= min badness for suffix words w[i :]
=⇒] subproblems = Θ(n) where n =] words

2. guessing = where to end first line, in the optimal justification of words w[i : n]
=⇒] choices = n− i + 1 = O(n)

3. relation:

• DP[i] = min(badness(i, j) + DP[j] for j in range(i + 1, n + 1))

• DP[n] = ∅
=⇒ time per subproblem = O(n)

4. total time = O(n2)

5. solution = DP[∅]
(& use parent pointers to recover split)

4

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Knapsack:

Knapsack of size S you want to pack with a subset of n items,

• each item i has integer size si & real value vi

• goal: choose subset of items of maximum total value subject to total size ≤ S

Trivial Algorithm:

Try all possible subsets of the items =⇒ runtime exponential in the number of items.

First Attempt:

1. subproblem DP [i] = value for suffix [i:] of items DOESN’T WORK, see below

2. guessing = whether to include item i =⇒] choices = 2

3. relation:

• DP [i] = max(DP [i + 1], vi + DP [i + 1] if����si ≤ S?!)

• not enough information to know whether item i fits - how much space is left?
GUESS!

Second Attempt, keeping more info:

1. subproblem DP [i, X] = value for suffix [i :] of items, given knapsack of size X

=⇒] subproblems = O(nS) !

2. guessing: whether to include i or not in the optimal knapsack of size X

3. relation:

• DP [i, X] = max(DP [i + 1, X], vi + DP [i + 1, X − si] if si ≤ X)

• DP [n, X] = ∅
=⇒ time per subproblem = O(1)

4. total time = O(nS)

5. solution = DP [∅, S]
(& use parent pointers to recover subset)
AMAZING: effectively trying all possible subsets!

Knapsack is in fact NP-complete! =⇒ suspect no polynomial-time 1 algorithm (polynomial
in length of input).

1More on NP-completeness later in the term. For now, NP-complete problems is a family of hard problems
for which no polynomial-time algorithm is known.

5

Lecture 20 Dynamic Programming III of IV 6.006 Fall 2009

Why isn’t the above algorithm polynomial time?

• here input =< S, s0, · · · , sn−1, v0, · · · , vn−1 >

• length in binary: O(lg S + lg s0 + · · ·) ≈ O(n lg . . .)

• so O(nS) is not “polynomial-time”, because S is exponential in log S, an it could be
that log S dominates the size of the input

• O(nS) still pretty good if S is small

• “pseudopolynomial time”: polynomial in length of input & integers in the input

Remember:
polynomial - GOOD
exponential - BAD
pseudopoly - SO SO

6

