
Lecture 18 Dynamic Programming I of IV 6.006 Fall 2009

Lecture 18: Dynamic Programming I:

Memoization, Fibonacci, Crazy Eights

Lecture Overview

• Fibonacci Warmup

• Memoization and subproblems

• Crazy Eights Puzzle

• Guessing Viewpoint

Readings

CLRS 15

Introduction to Dynamic Programming

• Powerful algorithm design technique, like Divide&Conquer.

• Creeps up when you wouldn’t expect, turning seemingly hard (exponential-time) prob-
lems into efficiently (polyonomial-time) solvable ones.

• Usually works when the obvious Divide&Conquer algorithm results in an exponential
running time.

Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, . . .

Recognize this sequence?
It’s the Fibonacci sequence, described by the recursive formula:

F0 := 0; F1 := 1;

Fn = Fn−1 + Fn−2, for all n ≥ 2.

Clearly, Fn ≤ 2Fn−1 ≤ 2n.

[In fact, the following is true for all n ≥ 1:

Fn :=
φn − (1− φ)n

√
5

,

where φ =
√

5+1
2 is the golde ratio.]

1



Lecture 18 Dynamic Programming I of IV 6.006 Fall 2009

So we don’t need more than n bits to represent Fn, but how hard is it to compute it?

Trivial algorithm for computing Fn:

naive fibo(n):
if n = 0: return 0
else if n = 1: return 1
else: return naive fibo(n− 1) + naive fibo(n− 2).

Figure 1 shows how the recursion unravels.

F5

F4

F3 F2

F2

F1 F0

F1 F1 F0 F1 F0

F2 F1

F3

Figure 1: Unraveling the Recursion of the Naive Fibonacci Algorithm.

Runtime Analysis
Suppose we store all intermediate results in n-bit registers. (Optimizing the space needed

for intermediate results is not going to change much.)

T (n) = T (n− 1) + T (n− 2) + c

≥ 2T (n− 2) + c

≥ . . .

≥ 2kT (n− 2 · k) + c(2k−1 + 2k−2 + . . .+ 2 + 1) = Ω(c2n/2),

where c is the time needed to add n-bit numbers. Hence T (n) = Ω(n2n/2).
EXPONENTIAL - BAD!

Problem with recursive algorithm:

Computes F (n− 2) twice, F (n− 3) three times, etc., each time from scratch.

Improved Fibonacci Algorithm

2



Lecture 18 Dynamic Programming I of IV 6.006 Fall 2009

Never recompute a subproblem F (k), k ≤ n, if it has been computed before. This technique
of remembering previously computed values is called memoization.

Recursive Formulation of Algorithm:

memo = { }
fib(n):

if n in memo: return memo[n]
else if n = 0: return 0

else if n = 1: return 1
else: f = fib(n− 1) + fib(n− 2)︸ ︷︷ ︸

free of charge!
memo[n] = f

return f

F5

F4

F3 F2

F2

F1 F0

F1

F1 F0 F1 F0

F2 F1

F3

these values are already 
computed and stored in memo 
when runtime processes these 
nodes of the recursion 

Figure 2: Unraveling the Recursion of the Clever Fibonacci Algorithm.

Runtime, assuming n-bit registers for each entry of memo data structure:

T (n) = T (n− 1) + c = O(cn),

where c is the time needed to add n-bit numbers. So T (n) = O(n2).

[Side Note: There is also an O(n · log n · log logn)- time algorithm for Fibonacci, via different
techniques]

3



Lecture 18 Dynamic Programming I of IV 6.006 Fall 2009

Dynamic Programming (DP)

* DP ≈ recursion + memoization (i.e. re-use)
* DP ≈ “controlled brute force”

DP results in an efficient algorithm, if the following conditions hold:

• the optimal solution can be produced by combining optimal solutions of subproblems;

• the optimal solution of each subproblem can be produced by combining optimal so-
lutions of sub-subproblems, etc;

• the total number of subproblems arising recursively is polynomial.

Implementation Trick:

• Remember (memoize) previously solved “subproblems”; e.g., in Fibonacci, we memo-
ized the solutions to the subproblems F0, F1, · · · , Fn−1, while unraveling the recursion.

• if we encounter a subproblem that has already been solved, re-use solution.

Runtime ≈ ] of subproblems · time/subproblem

Crazy Eights Puzzle

Problem Formulation:

Input: a sequence of cards c[∅], c[1], · · · , c[n− 1], e.g., 7♥, 6♥, 7♦, 3♦, 8♣, J♠;

Question: the longest left-to-right “trick subsequence”, i.e.

find c[i1], c[i2], · · · c[ik] (i1 < i2 < · · · ik)
where c[ij ] & c[ij+1] “match” for all j = 1, . . . , k,
i.e. they have the same suit or rank or one has rank 8

In the above example, the longest trick is 7♥, 7♦, 3♦, 8♣, J♠.

Algorithm for finding longest trick subsequence

• Let trick(i) = length of best trick starting at c[i];

• Can relate value of trick(i) with values of trick(j), for j > i, as follows:

trick(i) := 1 + max
j>i s.t. c[i] and c[j] match

{trick(j)}; (1)

• Longest Trick= maxi:0≤i≤n−1{trick(i)};

4



Lecture 18 Dynamic Programming I of IV 6.006 Fall 2009

• Algorithm? Memoize!
Recursive Formulation of Algorithm:

memo={}
trick(i):

if i in memo return memo[i]
else if i = n− 1: return 1
else:

f := 1 + maxj>i s.t. c[i] and c[j] match{trick(j)}
memo[i] = f

return f

call trick(0) /*this call will populate the memo array*/
return maximum value in memo

Alternative “Bottom-Up” Formulation of Algorithm:

memo = {}
for i = n− 1 down to 0

compute trick(i) applying (1) to the values stored in memo[j], j > i

store trick(i) in memo[i]
return maximum value in memo

• Runtime

time = ] subproblems︸ ︷︷ ︸
O(n)

· time/subproblem︸ ︷︷ ︸
O(n) for going through max

= O(n2)

• To find actual trick, trace through max’s. Need some extra book-keeping, i.e. remem-
bering for each i what j was selected by the max operator of Equation (1).

“Guessing” interpretation of DP

We can interpret recursion (1) as specifying the following:

“To compute trick(i) all I need is to guess the next card in the best trick starting at i.”

where Guess = try all possibilities.

For DP to work we need:
small ] of subproblems + small ] guesses per subproblem + small overhead to put solutions
together

5



Lecture 18 Dynamic Programming I of IV 6.006 Fall 2009

Then using memoization,
Runtime ≈ ] of subproblems × ] guesses per subproblem × overhead.

In crazy eights puzzle: number of subproblems was n, the number of guesses per subproblem
where O(n), and the overhead was O(1). Hence, the total running time was O(n2). 1

In Fibonacci numbers: there were n subproblems, no guessing was required for each sub-
problem, ant the overhead was O(n) (adding two n-bit numbers). So the overall runtime
was O(n2).

1To be precise, we need O(log n) bits to store each value trick(i), since this is a number in {1, . . . , n}. So

the addition operation in (1) is an addition over O(log n)-bit numbers, resulting in an overhead of O(log n).

So, strictly speaking, the running time is O(n2 log n). If n is small enough so that log n fits in a machine

word, we get O(n2).

6


