Lecture 18: Dynamic Programming I: Memoization, Fibonacci, Crazy Eights

Lecture Overview

- Fibonacci Warmup
- Memoization and subproblems
- Crazy Eights Puzzle
- Guessing Viewpoint

Readings

CLRS 15

Introduction to Dynamic Programming

- Powerful algorithm design technique, like Divide&Conquer.
- Creeps up when you wouldn’t expect, turning seemingly hard (exponential-time) problems into efficiently (polynomial-time) solvable ones.
- Usually works when the obvious Divide&Conquer algorithm results in an exponential running time.

Fibonacci Numbers

\[0, 1, 1, 2, 3, 5, 8, 13, \ldots\]

Recognize this sequence?

It’s the *Fibonacci sequence*, described by the recursive formula:

\[
F_0 := 0; \quad F_1 := 1;
\]
\[
F_n = F_{n-1} + F_{n-2}, \text{ for all } n \geq 2.
\]

Clearly, \(F_n \leq 2F_{n-1} \leq 2^n\).

[In fact, the following is true for all \(n \geq 1\):

\[
F_n := \frac{\phi^n - (1 - \phi)^n}{\sqrt{5}},
\]

where \(\phi = \frac{\sqrt{5}+1}{2}\) is the gold ratio.]
So we don’t need more than \(n \) bits to represent \(F_n \), but how hard is it to compute it?

Trivial algorithm for computing \(F_n \):

```python
naive_fibo(n):
    if n = 0: return 0
    else if n = 1: return 1
    else: return naive_fibo(n - 1) + naive_fibo(n - 2).
```

Figure 1 shows how the recursion unravels.

![Figure 1: Unraveling the Recursion of the Naive Fibonacci Algorithm.](image)

Runtime Analysis

Suppose we store all intermediate results in \(n \)-bit registers. (Optimizing the space needed for intermediate results is not going to change much.)

\[
T(n) = T(n - 1) + T(n - 2) + c \\
\geq 2T(n - 2) + c \\
\geq \ldots \\
\geq 2^k T(n - 2 \cdot k) + c(2^{k-1} + 2^{k-2} + \ldots + 2 + 1) = \Omega(c2^{n/2}),
\]

where \(c \) is the time needed to add \(n \)-bit numbers. Hence \(T(n) = \Omega(n2^{n/2}) \).

Problem with recursive algorithm:

Computes \(F(n - 2) \) twice, \(F(n - 3) \) three times, etc., each time from scratch.

Improved Fibonacci Algorithm
Never recompute a subproblem $F(k)$, $k \leq n$, if it has been computed before. This technique of remembering previously computed values is called memoization.

Recursive Formulation of Algorithm:

```python
cMemo = {}

def fib(n):
    if n in memo: return memo[n]
    elif n == 0: return 0
    elif n == 1: return 1
    else:
        f = fib(n-1) + fib(n-2)
    memo[n] = f
    return f
```

Figure 2: Unraveling the Recursion of the Clever Fibonacci Algorithm.

Runtime, assuming n-bit registers for each entry of memo data structure:

$$T(n) = T(n-1) + c = O(cn),$$

where c is the time needed to add n-bit numbers. So $T(n) = O(n^2)$.

[Side Note: There is also an $O(n \cdot \log n \cdot \log \log n)$-time algorithm for Fibonacci, via different techniques]
Dynamic Programming (DP)

- DP ≈ recursion + memoization (i.e. re-use)
- DP ≈ “controlled brute force”

DP results in an efficient algorithm, if the following conditions hold:

- the optimal solution can be produced by combining optimal solutions of subproblems;
- the optimal solution of each subproblem can be produced by combining optimal solutions of sub-subproblems, etc;
- the total number of subproblems arising recursively is polynomial.

Implementation Trick:

- Remember (memoize) previously solved “subproblems”; e.g., in Fibonacci, we memoized the solutions to the subproblems $F_0, F_1, \ldots, F_{n-1}$, while unraveling the recursion.
- if we encounter a subproblem that has already been solved, re-use solution.

Runtime ≈ \sum of subproblems · time/subproblem

Crazy Eights Puzzle

Problem Formulation:

Input: a sequence of cards $c[\emptyset], c[1], \ldots, c[n-1]$, e.g., $7\heartsuit, 6\diamondsuit, 7\diamondsuit, 3\diamondsuit, 8\clubsuit, J\spadesuit$;

Question: the longest left-to-right “trick subsequence”, i.e.

- find $c[i_1], c[i_2], \ldots, c[i_k]$ ($i_1 < i_2 < \cdots < i_k$)
- where $c[i_j]$ & $c[i_{j+1}]$ “match” for all $j = 1, \ldots, k$,
- i.e. they have the same suit or rank or one has rank 8

In the above example, the longest trick is $7\heartsuit, 7\diamondsuit, 3\diamondsuit, 8\clubsuit, J\spadesuit$.

Algorithm for finding longest trick subsequence

- Let $\text{trick}(i) =$ length of best trick starting at $c[i]$;
- Can relate value of $\text{trick}(i)$ with values of $\text{trick}(j)$, for $j > i$, as follows:

\[
\text{trick}(i) := 1 + \max_{j > i \text{ s.t. } c[i] \text{ and } c[j] \text{ match}} \{\text{trick}(j)\};
\]

- Longest Trick = $\max_{0 \leq i \leq n-1} \{\text{trick}(i)\}$.
• Algorithm? Memoize!

Recursive Formulation of Algorithm:

memo = {}
trick(i):
 if i in memo return memo[i]
 else if i = n – 1: return 1
 else:
 \(f := 1 + \max_{j > i \text{ s.t. } c[i] \text{ and } c[j] \text{ match}} \{\text{trick}(j)\} \)
 memo[i] = f
 return f

call trick(0) /*this call will populate the memo array*/
return maximum value in memo

Alternative “Bottom-Up” Formulation of Algorithm:

memo = {}
for i = n – 1 down to 0
 compute trick(i) applying (1) to the values stored in memo[j], j > i
 store trick(i) in memo[i]
return maximum value in memo

• Runtime

time = \#subproblems \cdot \frac{\text{time/subproblem}}{O(n)} \cdot O(n) \text{ for going through max}
= O(n^2)

• To find actual trick, trace through max’s. Need some extra book-keeping, i.e. remembering for each i what j was selected by the max operator of Equation (1).

“Guessing” interpretation of DP

We can interpret recursion (1) as specifying the following:

“To compute trick(i) all I need is to guess the next card in the best trick starting at i.”

where Guess = try all possibilities.

For DP to work we need:
small \# of subproblems + small \# guesses per subproblem + small overhead to put solutions together
Then using memoization,

\[\text{Runtime} \approx \# \text{of subproblems} \times \# \text{guesses per subproblem} \times \text{overhead}. \]

In crazy eights puzzle: number of subproblems was \(n \), the number of guesses per subproblem where \(O(n) \), and the overhead was \(O(1) \). Hence, the total running time was \(O(n^2) \). \[\]

In Fibonacci numbers: there were \(n \) subproblems, no guessing was required for each subproblem, and the overhead was \(O(n) \) (adding two \(n \)-bit numbers). So the overall runtime was \(O(n^2) \).

\[\]

\[\]

\[^1 \text{To be precise, we need } O(\log n) \text{ bits to store each value trick}(i), \text{ since this is a number in } \{1, \ldots, n\}. \text{ So the addition operation in } [1] \text{ is an addition over } O(\log n)\text{-bit numbers, resulting in an overhead of } O(\log n). \text{ So, strictly speaking, the running time is } O(n^2 \log n). \text{ If } n \text{ is small enough so that } \log n \text{ fits in a machine word, we get } O(n^2). \]