Lecture 16: Shortest Paths III - Dijkstra and Special Cases

Lecture Overview

- Shortest paths in DAGs
- Shortest paths in graphs without negative edges
- Dijkstra’s Algorithm

Readings

CLRS, Sections 24.2-24.3

DAGs:

Can’t have negative cycles because there are no cycles!

1. Topologically sort the DAG. Path from u to v implies that u is before v in the linear ordering

2. One pass over vehicles in topologically sorted order relaxing each edge that leaves each vertex
 $\Theta(V + E)$ time

Example:

![Figure 1: Shortest Path using Topological Sort.](image)

Vertices sorted left to right in topological order

Process r: stays ∞. All vertices to the left of s will be ∞ by definition

Process s: $t : \infty \rightarrow 2 \quad x : \infty \rightarrow 6$ (see top of Figure 2)
DIJKSTRA Demo

Dijkstra’s Algorithm

For each edge \((u, v) \in E\), assume \(w(u, v) \geq 0\), maintain a set \(S\) of vertices whose final shortest path weights have been determined. Repeatedly select \(u \in V - S\) with minimum shortest path estimate, add \(u\) to \(S\), relax all edges out of \(u\).

Pseudo-code

Dijkstra \((G, W, s)\) //uses priority queue \(Q\)
 Initialize \((G, s)\)
 \(S \leftarrow \phi\)
 \(Q \leftarrow V[G]\) //Insert into \(Q\)
 while \(Q \neq \phi\)
 do \(u \leftarrow\) EXTRACT-MIN\((Q)\) //deletes \(u\) from \(Q\)
 \(S = S \cup \{u\}\)
 for each vertex \(v \in \text{Adj}[u] \)
 do RELAX \((u, v, w)\) ← this is an implicit DECREASE_KEY operation
Figure 3: Dijkstra Demonstration with Balls and String.

Recall

\[\text{RELAX}(u, v, w) \]

if \(d[v] > d[u] + w(u, v) \)
then \(d[v] \leftarrow d[u] + w(u, v) \)
\(\Pi[v] \leftarrow u \)

Example

Strategy: Dijkstra is a greedy algorithm: choose closest vertex in \(V - S \) to add to set \(S \)

Correctness: Each time a vertex \(u \) is added to set \(S \), we have \(d[u] = \delta(s, u) \)
Complexity

\(\theta(v) \) inserts into priority queue
\(\theta(v) \) EXTRACT_MIN operations
\(\theta(E) \) DECREASE_KEY operations

Array impl:

\(\theta(v) \) time for extra min
\(\theta(1) \) for decrease key
Total: \(\theta(VV + E.1) = \theta(V^2 + E) = \theta(V^2) \)

Binary min-heap:

\(\theta(\lg V) \) for extract min
\(\theta(\lg V) \) for decrease key
Total: \(\theta(V \lg V + E \lg V) \)

Fibonacci heap (not covered in 6.006):

\(\theta(\lg V) \) for extract min
\(\theta(1) \) for decrease key
amortized cost
Total: \(\theta(V \lg V + E) \)
\(S = \{ \} \) \{ A , B , C , D , E \} = Q

\(S = \{ A \} \)
\(0\) \(\infty\) \(\infty\) \(\infty\) \(\infty\)

\(S = \{ A , C \} \)
\(0 \) \(10\) \(3\) \(\infty\) \(\infty\) \(\leftarrow \) after relaxing edges from A

\(S = \{ A , C \} \)
\(0 \) \(7\) \(3\) \(11\) \(5\) \(\leftarrow \) after relaxing edges from C

\(S = \{ A , C , E \} \)
\(0 \) \(7\) \(3\) \(11\) \(5\)

\(S = \{ A , C , E , B \} \)
\(0 \) \(7\) \(3\) \(9\) \(5\) \(\leftarrow \) after relaxing edges from B

Figure 4: Dijkstra Execution