Lecture 12: Searching II: Breadth-First Search and Depth-First Search

Lecture Overview: Search 2 of 3

- Breadth-First Search
- Shortest Paths
- Depth-First Search
- Edge Classification

Readings

CLRS 22.2-22.3

Recall:

graph search: explore a graph
e.g., find a path from start vertices to a desired vertex

adjacency lists: array Adj of |V| linked lists

- for each vertex u ∈ V, Adj[u] stores u's neighbors, i.e. \{v ∈ V | (u, v) ∈ E\}
 v - just outgoing edges if directed

Figure 1: Adjacency Lists. (Error: edge from a to b should be from b to a.)
Breadth-first Search (BFS):

See Figure 2

Explore graph level by level from S

- level $\phi = \{s\}$
- level i = vertices reachable by path of i edges but not fewer
- build level $i > 0$ from level $i - 1$ by trying all outgoing edges, but ignoring vertices from previous levels

BFS (V,Adj,s):

```plaintext
level = \{ s: \phi \}
parent = \{ s : None \}
i = 1
frontier = [s]  \# previous level, $i - 1$

while frontier:
    next = []  \# next level, $i$
    for u in frontier:
        for v in Adj[u]:
            if v not in level:  \# not yet seen
                level[v] = i  \# = level[u] + 1
                parent[v] = u
                next.append(v)
    frontier = next
    i += 1
```

Figure 2: Breadth-First Search
Example:

```
frontier₀ = {s}
frontier₁ = {a, x}
frontier₂ = {z, d, c}
frontier₃ = {f, v}
(not x, c, d)
```

Figure 3: Breadth-First Search Frontier

Analysis:

- vertex V enters next (& then frontier) only once (because $\text{level}[v]$ then set)
 - base case: $v = s$
- \Rightarrow $\text{Adj}[v]$ looped through only once
- $\text{time} = \sum_{v \in V} |\text{Adj}[V]| = \begin{cases} |E| & \text{for directed graphs} \\ 2|E| & \text{for undirected graphs} \end{cases}$
- $O(E)$ time
 - $O(V + E)$ to also list vertices unreachable from v (those still not assigned level)
 - “LINEAR TIME”

Shortest Paths:

- for every vertex v, fewest edges to get from s to v is

 $\begin{cases} \text{level}[v] \text{ if } v \text{ assigned level} \\ \infty \text{ else (no path)} \end{cases}$

- parent pointers form shortest-path tree = union of such a shortest path for each v
 - \Rightarrow to find shortest path, take v, parent[v], parent[parent[v]], etc., until s (or None)
Depth-First Search (DFS):

This is like exploring a maze.

- follow path until you get stuck
- backtrack along breadcrumbs until reach unexplored neighbor
- recursively explore

```python
parent = {s: None}

DFS-visit (V, Adj, s):
    for v in Adj[s]:
        if v not in parent:
            parent[v] = s
            DFS-visit (V, Adj, v)

DFS (V, Adj):
    parent = {}
    for s in V:
        if s not in parent:
            parent[s] = None
            DFS-visit (V, Adj, s)
```

Figure 4: Depth-First Search Frontier

Figure 5: Depth-First Search Algorithm
Example:

![Graph with labeled edges](image)

Figure 6: Depth-First Traversal

Edge Classification:

- **tree edges (formed by parent)**
- **nontree edges**
- **back edge: to ancestor**
- **forward edge: to descendant**
- **cross edge (to another subtree)**

![Diagram showing edge classifications](image)

Figure 7: Edge Classification

To compute this classification, keep global time counter and store time interval during which each vertex is on recursion stack.

Analysis:

- DFS-visit gets called with a vertex s only once (because then parent[s] set)
 \[
 \Rightarrow \text{time in DFS-visit} = \sum_{s \in V} |\text{Adj}[s]| = O(E)
 \]
- DFS outer loop adds just $O(V)$
 \[
 \Rightarrow O(V + E) \text{ time (linear time)}
 \]