Lecture 9: Sorting II: Heaps

Lecture Overview

- Priority Queues
- Heaps
- Heapsort

Readings

CLRS 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4

Priority Queues

This is an abstract datatype implementing a set S of elements, each associated with a key. Supports the following operations:

$\operatorname{insert}(S, x)$:	insert element x into set S
$\max(S)$:	return element of S with largest key
$\operatorname{extract}_{\operatorname{max}}(S)$:	return element of S with largest key and remove it from S
increase_key (S, x, k) :	increases the value of element x 's key to new value k
	(assumed to be as large as current value)

Heaps

An implementation of a priority queue. It is an array object, visualized as a nearly complete binary tree.

Heap Property: The key of a node is \geq than the keys of its children; e.g., Figure 1.

Figure 1: Binary Heap

NOTE: For convenience, the first index in the array is 1.

Visualizing an Array as a Tree

root of tree: first element in the array—corresponding index = 1, node with index i: parent(i) = $\lfloor \frac{i}{2} \rfloor$; returns index of node's parent, e.g. parent(5)=2 left(i) = 2i; returns index of node's left child, e.g. left(4)=8 right(i) = 2i + 1; returns index of node's right child, e.g. right(4)=9

Note: no pointers required! Height of a binary heap $O(\log_2 n)$.

Heap-Size Variable

For flexibility we may only need to consider the first few elements of an array as part of the heap. The variable heap-size denotes the number of items of the array that are part of the heap: $A[1], \ldots, A[\text{heap-size}]$;

Max-Heaps vs Min-Heaps

Max Heaps satisfy the Max-Heap Property : for all $i, A[i] \ge \max\{A[\operatorname{left}(i)], A[\operatorname{right}(i)]\}$. If $\operatorname{left}(i)$ or $\operatorname{right}(i)$ is undefined, replace $A[\operatorname{left}(i)]$, respectively $A[\operatorname{right}(i)]$, by $-\infty$. In particular, if node i has no children, the property is trivially satisfied.

Everything we describe applies to the construction and operation of *Min Heaps*, satisfying the *Min-Heap Property* : for all $i, A[i] \leq \min\{A[\operatorname{left}(i)], A[\operatorname{right}(i)]\}$. If $\operatorname{left}(i)$ or $\operatorname{right}(i)$ is undefined, replace $A[\operatorname{left}(i)]$, respectively $A[\operatorname{right}(i)]$, by $+\infty$. In particular, if node i has no children, the property is trivially satisfied.

Operations with Heaps

build_max_heap: produce a max-heap from unordered input array in O(n);

max_heapify: correct a single violation of the heap property at the root of a subtree in $O(\log n)$;

heapsort: sort an array of size n in $O(n \log n)$ via the use of heaps;

insert, extract_max: $O(\lg n)$

$Max_Heapify(A,i)$

Assume that the trees rooted at left(i) and right(i) are max-heaps. If element A[i] violates the max-heap property, correct violation by trickling element A[i] down the tree, making the subtree rooted at index i a max-heap. See Figure 2; then read the pseudocode below.

$$\begin{array}{rcl} l & \leftarrow & \mathsf{left}(i) \\ r & \leftarrow & \mathsf{right}(i) \end{array}$$

```
 \begin{array}{l} \text{if } l \leq \text{heap-size}(\mathsf{A}) \text{ and } A[l] > A[i] \\ \text{then largest} \leftarrow l \\ \text{else largest} \leftarrow i \\ \text{if } r \leq \text{heap-size}(\mathsf{A}) \text{ and } A[r] > A[\text{largest}] \\ \text{then largest} \leftarrow r \\ \text{if largest} \neq i \\ \text{then exchange } A[i] \text{ and } A[\text{largest}] \\ \text{MAX\_HEAPIFY}(\mathsf{A}, \text{largest}) \\ \end{array}
```

Example

$Build_Max_Heap(A)$

 $A[1 \cdots n]$ converted to a max_heap Observation: Elements $A[\lfloor n/2 \rfloor + 1 \cdots n]$ are all leaves of the tree (why? 2i > n, for $i > \lfloor n/2 \rfloor + 1$).

See Figure 3 for an example.

NOTE: The trivial analysis of the algorithm noted above, shows that the running time is $O(n \log n)$. Observe, however, that Max_Heapify only takes O(1) time for the nodes that are one level above the leaves, and in general $O(\ell)$ for the nodes that are ℓ levels above the leaves. Using this observation, it can be shown that the overall time for Build_Max_Heap(A) is O(n).

MAX_HEAPIFY (A,2) heap_size[A] = 10

Exchange A[2] with A[4] Call MAX_HEAPIFY(A,4) because max_heap property is violated

Exchange A[4] with A[9] No more calls

Figure 2: MAX_HEAPIFY Example

Figure 3: Example: Building Heaps

Sorting Strategy

- Build max_heap from unordered array
- Find maximum element (A[1])
- Swap elements A[n] and A[1]; now max element is at the right position;
- Discard node *n* from heap (decrement heap-size variable);
- New root could violate max_heap property, but children remain max_heaps. Run max_heapify to fix this;

Heap Sort Algorithm

See Figure 4 for an illustration.

and so on . . .

Figure 4: Illustration: Heap Sort Algorithm