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Lecture 9: Sorting II: Heaps

Lecture Overview

• Priority Queues

• Heaps

• Heapsort

Readings

CLRS 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4

Priority Queues

This is an abstract datatype implementing a set S of elements, each associated with a key.
Supports the following operations:

insert(S, x) : insert element x into set S

max(S): return element of S with largest key
extract max(S): return element of S with largest key and remove it from S

increase key(S, x, k): increases the value of element x’s key to new value k

(assumed to be as large as current value)

Heaps

An implementation of a priority queue. It is an array object, visualized as a nearly complete
binary tree.

Heap Property: The key of a node is ≥ than the keys of its children; e.g., Figure 1.

Lecture 9 Sorting II: Heaps 6.006 Fall 2009

Lecture 9: Sorting II: Heaps

Lecture Overview

• Priority Queues

• Heaps

• Heapsort

Readings

CLRS 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4

Priority Queues

This is an abstract datatype implementing a set S of elements, each associated with a key.
Supports the following operations:

insert(S, x) : insert element x into set S

max(S): return element of S with largest key
extract max(S): return element of S with largest key and remove it from S

increase key(S, x, k): increases the value of element x’s key to new value k

(assumed to be as large as current value)

Heaps

An implementation of a priority queue. It is an array object, visualized as a nearly complete
binary tree.

Heap Property: The key of a node is ≤ than the key of its parent node; e.g., Figure 1.

16 14 8 7 9 3 2 4 110

1 2 3 4 5 6 7 8 9 10
10

16

14

8 7

1

2

5

3

4 9 376

2 498
1

Figure 1: Binary Heap

NOTE: For convenience, the first index in the array is 1.
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Visualizing an Array as a Tree

root of tree: first element in the array—corresponding index = 1,
node with index i:

parent(i) = b i
2c; returns index of node’s parent, e.g. parent(5)=2

left(i) = 2i; returns index of node’s left child, e.g. left(4)=8
right(i) = 2i + 1; returns index of node’s right child, e.g. right(4)=9

Note: no pointers required! Height of a binary heap O(log2 n).

Heap-Size Variable

For flexibility we may only need to consider the first few elements of an array as part of the
heap. The variable heap-size denotes the number of items of the array that are part of the
heap: A[1], . . . , A[heap-size];

Max-Heaps vs Min-Heaps

Max Heaps satisfy the Max-Heap Property : for all i, A[i] ≥ max{A[left(i)], A[right(i)]}. If
left(i) or right(i) is undefined, replace A[left(i)], respectively A[right(i)], by −∞. In partic-
ular, if node i has no children, the property is trivially satisfied.

Everything we describe applies to the construction and operation of Min Heaps, satisfying
the Min-Heap Property : for all i, A[i] ≤ min{A[left(i)], A[right(i)]}. If left(i) or right(i) is
undefined, replace A[left(i)], respectively A[right(i)], by +∞. In particular, if node i has
no children, the property is trivially satisfied.

Operations with Heaps

build max heap: produce a max-heap from unordered input array in O(n);

max heapify: correct a single violation of the heap property at the root of a subtree in
O(log n);

heapsort: sort an array of size n in O(n log n) via the use of heaps;

insert, extract max: O(lg n)

Max Heapify(A,i)

Assume that the trees rooted at left(i) and right(i) are max-heaps. If element A[i] violates
the max-heap property, correct violation by trickling element A[i] down the tree, making
the subtree rooted at index i a max-heap. See Figure 2; then read the pseudocode below.

l ← left(i)

r ← right(i)
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if l ≤ heap-size(A) and A[l] > A[i]
then largest ← l

else largest ← i

if r ≤ heap-size(A) and A[r] > A[largest]
then largest ← r

if largest 6= i

then exchange A[i] and A[largest]

MAX HEAPIFY(A, largest)

Example

Build Max Heap(A)

A[1 · · ·n] converted to a max heap Observation: Elements A[bn/2c + 1 · · ·n] are all leaves
of the tree (why? 2i > n, for i > bn/2c+ 1).

Build Max Heap(A):
heap size(A) = length(A)

O(n) times for i ← b length[A]/2c downto 1
O(log n) time do Max Heapify(A, i)

O(n log n) overall

See Figure 3 for an example.

NOTE: The trivial analysis of the algorithm noted above, shows that the running time is
O(n log n). Observe, however, that Max Heapify only takes O(1) time for the nodes that
are one level above the leaves, and in general O(`) for the nodes that are ` levels above the
leaves. Using this observation, it can be shown that the overall time for Build Max Heap(A)
is O(n).
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MAX_HEAPIFY (A,2)
heap_size[A]  = 10

Exchange A[2] with A[4]
Call MAX_HEAPIFY(A,4) 
because max_heap property 
is violated

Exchange A[4] with A[9]
No more calls

Figure 2: MAX HEAPIFY Example

4



Lecture 9 Sorting II: Heaps 6.006 Fall 2009

MAX-HEAPIFY (A,5)
no change
MAX-HEAPIFY (A,4)
Swap A[4] and A[8]
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MAX-HEAPIFY (A,2)
Swap A[2] and A[5]
Swap A[5] and A[10]
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MAX-HEAPIFY (A,1)
Swap A[1] with A[2]
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Figure 3: Example: Building Heaps
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Sorting Strategy

• Build max heap from unordered array

• Find maximum element (A[1])

• Swap elements A[n] and A[1]; now max element is at the right position;

• Discard node n from heap (decrement heap-size variable);

• New root could violate max heap property, but children remain max heaps. Run
max heapify to fix this;

Heap Sort Algorithm

O(n) Build Max Heap(A):
n times for i =length[A] downto 2

do exchange A[1]←→ A[i]
heap size[A] = heap size[A]− 1

O(log n) MAX HEAPIFY(A, 1)
O(n log n) overall

See Figure 4 for an illustration.
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not part of heap

heap_size = 9
MAX_HEAPIFY (A,1)

Note: cannot run MAX_HEAPIFY with heapsize of 10

MAX_HEAPIFY (A,1)

MAX_HEAPIFY (A,1)
and so on . . .

not part of heap

not part of heap

Figure 4: Illustration: Heap Sort Algorithm
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