Lecture 9: Sorting II: Heaps

Lecture Overview

- Priority Queues $L_{\rm H}$ Sorting II: $L_{\rm H}$ and $L_{\rm H}$
- Heaps
- Heapsort

Readings

CLRS 2.1, 2.2, 2.3, 6.1, 6.2, 6.3 and 6.4

Priority Queues

This is an abstract datatype implementing a set S of elements, each associated with a key. Supports the following operations: Readings

Heaps

An implementation of a priority queue. It is an array object, visualized as a nearly complete binary tree. $A = \mathbf{0}$ implementation of a priority queue. It is an array object, visualized as a nearly complete as a nearly co \mathcal{A} is an array object, visualized as a nearly complete as a nearly complete as a nearly complete as a nearly complete \mathcal{A}

Heap Property: The key of a node is \geq than the keys of its children; e.g., Figure [1.](#page-0-0)

Figure 1: Binary Heap Figure 1: Binary Heap Figure 1: Binary Heap

NOTE: For convenience, the first index in the array is 1.

Visualizing an Array as a Tree

root of tree: first element in the array—corresponding index $= 1$, node with index i: parent(i) = $\lfloor \frac{i}{2} \rfloor$ $\frac{i}{2}$; returns index of node's parent, e.g. parent $(5)=2$ left(i) = 2*i*; returns index of node's left child, e.g. left(4)=8 right(i) = $2i + 1$; returns index of node's right child, e.g. right(4)=9

Note: no pointers required! **Height** of a binary heap $O(\log_2 n)$.

Heap-Size Variable

For flexibility we may only need to consider the first few elements of an array as part of the heap. The variable heap-size denotes the number of items of the array that are part of the heap: $A[1], \ldots, A[\text{heap-size}];$

Max-Heaps vs Min-Heaps

Max Heaps satisfy the *Max-Heap Property* : for all i, $A[i] \geq \max\{A[\text{left}(i)], A[\text{right}(i)]\}$. If left(i) or right(i) is undefined, replace $A[left(i)]$, respectively $A[right(i)]$, by $-\infty$. In particular, if node i has no children, the property is trivially satisfied.

Everything we describe applies to the construction and operation of *Min Heaps*, satisfying the *Min-Heap Property*: for all i , $A[i] \le \min\{A[\text{left}(i)], A[\text{right}(i)]\}$. If left (i) or right (i) is undefined, replace $A[left(i)]$, respectively $A[right(i)]$, by $+\infty$. In particular, if node i has no children, the property is trivially satisfied.

Operations with Heaps

build max heap: produce a max-heap from unordered input array in $O(n)$;

max heapify: correct a single violation of the heap property at the root of a subtree in $O(\log n);$

heapsort: sort an array of size n in $O(n \log n)$ via the use of heaps;

insert, extract_max: $O(\lg n)$

$Max_$ Heapify (A,i)

Assume that the trees rooted at left(i) and right(i) are max-heaps. If element $A[i]$ violates the max-heap property, correct violation by trickling element $A[i]$ down the tree, making the subtree rooted at index i a max-heap. See Figure [2;](#page-3-0) then read the pseudocode below.

$$
l \leftarrow \text{ left}(i) r \leftarrow \text{ right}(i)
$$

```
if l \leq heap-size(A) and A[l] > A[i]then largest \leftarrow l
else largest \leftarrow iif r \leq heap-size(A) and A[r] > A[\text{largest}]then largest \leftarrow rif largest \neq ithen exchange A[i] and A[largest]
     MAX HEAPIFY(A, largest)
```
Example

Build_Max_Heap (A)

 $A[1 \cdots n]$ converted to a max heap *Observation*: Elements $A[[n/2]+1 \cdots n]$ are all leaves of the tree (why? $2i > n$, for $i > |n/2| + 1$).

> Build_Max_Heap (A) : heap_size(A) = length(A) $O(n)$ times for $i \leftarrow |\text{ length}[A]/2|$ downto 1 $O(\log n)$ time do Max_Heapify (A, i) $O(n \log n)$ overall

See Figure [3](#page-4-0) for an example.

NOTE: The trivial analysis of the algorithm noted above, shows that the running time is $O(n \log n)$. Observe, however, that Max Heapify only takes $O(1)$ time for the nodes that are one level above the leaves, and in general $O(\ell)$ for the nodes that are ℓ levels above the leaves. Using this observation, it can be shown that the overall time for Build Max Heap (A) is $O(n)$.

MAX_HEAPIFY (A,2) $heap_size[A] = 10$

Exchange A[2] with A[4] Call MAX_HEAPIFY(A,4) because max_heap property is violated

Exchange A[4] with A[9] No more calls

Figure 3: Example: Building Heaps

Sorting Strategy

- Build max heap from unordered array
- Find maximum element $(A[1])$
- Swap elements $A[n]$ and $A[1]$; now max element is at the right position;
- Discard node n from heap (decrement heap-size variable);
- New root could violate max heap property, but children remain max heaps. Run max heapify to fix this;

Heap Sort Algorithm

$$
O(n) \qquad \text{Build_Max} \text{Heap}(A):
$$
\n
$$
n \text{ times } \quad \text{for } i = \text{length}[A] \text{ down to 2}
$$
\n
$$
\text{do exchange } A[1] \longleftrightarrow A[i]
$$
\n
$$
\text{heap} \text{ size}[A] = \text{heap} \text{ size}[A] - 1
$$
\n
$$
O(\log n) \qquad \text{MAX} \text{.HERPIFY}(A, 1)
$$
\n
$$
O(n \log n) \text{ overall}
$$

See Figure [4](#page-6-0) for an illustration.

and so on . . .

Figure 4: Illustration: Heap Sort Algorithm