Lecture 8: Sorting I: Insertion Sort, Merge Sort, Master Theorem

Lecture Overview

- Sorting
- Insertion Sort
- Mergesort (Divide and Conquer)
- In-Place Sorting
- Master Theorem

Readings

CLRS Chapter 4

The Sorting Problem

Input: An array $A[0 : n]$ containing n numbers in \mathbb{R}.

Output: A sorted array $B[0 : n]$ containing the same numbers.

e.g. $A = [7, 2, 5, 5, 9.6] \rightarrow B = [2, 5, 5, 7, 9.6]$

many applications, e.g.: phonebook.

Sorting Methods

Insertion Sort

for $i = 1, 2, \ldots, n$

- insert element $A[i]$ into the sorted array $A[0 : i]$ by pairwise swaps down to its right position.

E.g. Sample Execution: See Figure 1

Running Time?

$O(n^2)$, worst case example: $A = [n, n - 1, n - 2, \ldots, 2, 1]$.

Improve to $O(n \log n)$?

Replace downward pairwise swaps, with binary search in $A[0 : i]$.

Called Binary Insertion Sort.
Merge Sort

Sorting Algorithm that uses the Divide & Conquer paradigm. See Figure 2.

Fast Merge: Exploit the fact that the arrays are already sorted. “Two finger” algorithm—Figure 3—takes linear time.
Key Property: \textit{Sort} is done recursively.

Run-time Analysis

$$T(n) = C_1 \underbrace{+ 2.T(n/2)}_{\text{divide}} + C_2n \underbrace{+} _{\text{merge}} C_2n$$

Unravelling the recursion

$$T(n) = 2T(n/2) + C \cdot n + C_1$$

$$= 2 \left(2T(n/4) + C \cdot \frac{n}{2} + C_1 \right) + C \cdot n + C_1 = 2^2 \cdot T \left(\frac{n}{2^2} \right) + 2C \cdot n + (1 + 2)C_1$$

$$= \ldots = 2^3 \cdot T \left(\frac{n}{2^3} \right) + 3C \cdot n + (1 + 2 + 2^2)C_1$$

$$= \ldots$$

$$= 2^k \cdot T \left(\frac{n}{2^k} \right) + kC \cdot n + (1 + 2 + 2^2 + \ldots + 2^{k-1})C_1 =$$

$$= (\text{assuming } n = 2^k) = nT(1) + \log_2 n \cdot C \cdot n + (n - 1)C_1 = \Theta(n \log_2 n).$$

See Figure 4. The leaves correspond to matrices of size 1 at the maximum recursion depth (no further division into subproblems is possible). Going bottom-up in the recursion tree, need to pay the merge cost and the divide cost. The depth of the tree is \(\Theta(\log n)\) and every level costs \(\Theta(n)\). Total is \(\Theta(n \log n)\). We omitted the constant additive cost \(C_1\) from the nodes in the figure.
An Experiment

- Test Merge Routine: Merge Sort (in Python) takes \(\approx 2.2n \log(n) \) µs
- Test Insert Routine: Insertion Sort (in Python) takes \(\approx 0.2n^2 \) µs
- Test Insert Routine: Insertion Sort (in C) takes \(\approx 0.01n^2 \) µs

Question: When is Merge Sort (in Python) \(2n \log(n) \) better than Insertion Sort (in C) \(0.01n^2 \)?

Answer: Merge Sort wins for \(n \geq 2^{12} = 4096 \)

Take Home Point: A better algorithm is sometimes more valuable than hardware or compiler improvements even for modest \(n \).

In-Place Sorting

Numbers re-arranged in the input array \(A \) with at most a constant amount of extra storage at any time.

Insertion Sort: only \(O(1) \) extra space is needed; so in-place

Merge Sort: need \(O(n) \) auxiliary space during merging and (depending on the underlying architecture) may require up to \(\Theta(n \log n) \) space for the stack. Can turn it into an in-place sorting algorithm by designing the algorithm more carefully.
Master Theorem

Generic Divide and Conquer Recursion:

\[T(n) = aT(n/b) + f(n), \]

where

- \(a\) is the number of subproblems
- \(n/b\) is the size of each subproblem—hopefully \(b > 1\)
- \(f(n)\) is the cost of dividing the problem into subproblems, and merging the solutions of the subproblems.

E.g. 1 Mergesort: \(a = 2, b = 2, f(n) = Cn + C_1\).
E.g. 2 Binary Search: \(a = 1, b = 2, f(n) = O(1)\).

Depending on the tradeoff between \(a, b\) and \(f(n)\) different solution to the recurrence.

\[T(n) = aT(n/b) + f(n) \]
\[= a^2T(n/b^2) + (f(n) + af(n/b)) \]
\[= \ldots \]
\[= a^kT(n/b^k) + (f(n) + af(n/b) + \ldots a^{k-1}f(n/b^{k-1})) \]
\[= (\text{assuming } n = b^\ell) = a^\ell T(1) + (f(b^\ell) + af(b^{\ell-1}) + \ldots + a^{\ell-1}f(b)) = \]
\[= a^{\log_b n}T(1) + (f(b^\ell) + af(b^{\ell-1}) + \ldots + a^{\ell-1}f(b)) = \]
\[= \Theta(n^{\log_b a}) + (f(b^\ell) + af(b^{\ell-1}) + \ldots + a^{\ell-1}f(b)) \]

Now what about \(f(\cdot)\):

e.g.1 if \(f(n) = \Theta(n^{\log_b a})\), easy to show: \(a^k f(b^{\ell-k}) = \Theta(n^{\log_b a})\), for all \(k\). Hence, we get from the above

\[T(n) = \Theta(n^{\log_b a \log_b n}). \]

e.g.2 if \(f(n) = \Theta(n^{\log_b a - \epsilon})\) for some \(\epsilon > 0\), easy to show: \(a^k f(b^{\ell-k}) = \Theta(n^{\log_b a - \epsilon \cdot b^{\ell-k}})\), for all \(k\). Hence, we get from the above

\[T(n) = \Theta(n^{\log_b a}), \]

because the sum \(f(b^\ell) + af(b^{\ell-1}) + \ldots + a^{\ell-1}f(b) = n^{\log_b a}\).

e.g.3 if \(f(n) = \Theta(n^{\log_b a + \epsilon})\) for some \(\epsilon > 0\), easy to show: \(a^k f(b^{\ell-k}) = \Theta(n^{\log_b a + \epsilon \cdot b^{-k\epsilon}})\), for all \(k\). Hence, we get from the above

\[T(n) = \Theta(n^{\log_b a + \epsilon}), \]

because the sum \(f(b^\ell) + af(b^{\ell-1}) + \ldots + a^{\ell-1}f(b) = \Theta(n^{\log_b a + \epsilon}). \)