Lecture 5: Hashing I: Chaining, Hash Functions

Lecture Overview

- Dictionaries
- Motivation — fast DNA comparison
- Hash functions
- Collisions, Chaining
- Simple uniform hashing
- “Good” hash functions

Readings

CLRS Chapter 11. 1, 11. 2, 11. 3.

Dictionary Problem

Dictionary: Abstract Data Type (ADT) maintaining a set of items, each with a key.

E.g. (phonebook) keys are names, and their corresponding items are phone numbers
E.g.2 (real dictionary) keys are english words, and their corresponding items are dictionary-entries

Operations to Support:

- insert(item): add item to set
- delete(item): remove item from set
- search(key): return item with key if it exists

Assumption: items have distinct keys (or that inserting new one clobbers old)

- Balanced BSTs solve in $O(\log n)$ time per operation (in addition to inexact searches like nextlargest). What is the $O(\cdot)$ notation hiding? Reality: $O(\log n) \cdot \text{key_length}$ — important distinction if key is not a number or key-length is larger than machine word.

- Our goal: $O(1)$ time per operation (again we mean $O(1) \cdot \text{key_length}$). Using an idea called ‘Rolling Hash’ in the next lecture, we will sometimes manage to avoid paying the key_length multiplicative penalty (on average).
Motivation

Example Application: How close is chimp DNA to human DNA? Find the longest common substring of two strings, e.g. ALGORITHM vs. ARITHMETIC.

Naive algorithm?

INPUT: two strings S1, S2 of length n.

for $l = n$, $n-1$, ..., 1
 for all substrings x_1 of S_1 of length l
 for all substrings x_2 of S_2 of length l
 if $x_1 == x_2$ return l;

i.e. compare all possible substrings of the two DNA sequences — needs $\Theta(n^4)$ operations.

Improvements? Can do binary search (how?) on the length of the longest common substring, dropping down the number of operations to $\Theta(n^3 \log n)$.

→ Using dictionaries can drop this down to $\Theta(n^2 \log n)$. Here is how:

For all possible lengths l:

- Insert all substrings of S_1 of length l into a dictionary;
 (there are $O(n)$ such substrings, and each insertion takes $O(1) \cdot 1$ time)

- for all $O(n)$ substrings of S_2 of length l do a $O(1) \cdot 1$ look-up!

Running time is $O(n^3)$. Now replacing the outer loop with Binary Search reduces this to $O(n^2 \log n)$.
How do we solve the dictionary problem?

A simple approach would be a direct access table. This means items would need to be stored in an array, indexed by key.

![Direct-access table](image)

Figure 1: Direct-access table

Problems:

1. keys must be nonnegative integers (or using two arrays, integers)
2. large key range \(\Rightarrow\) large space e.g. one key of \(2^{256}\) is bad news.

2 Solutions:

Solution 1: map key space to integers “Everything is number.” - Pythagoras.

- In Python: hash (object) where object is a number, string, tuple, etc. or object implementing `__hash__`
- Misnomer: should be called “prehash”
- Ideally, \(x = y \iff\) hash\((x) = \) hash\((y)\)
- Python applies some heuristics e.g. hash\((‘\\$B’) = 64 = \) hash\((‘\\$\$C’)\)
- Object’s key should not change while in table (else cannot find it anymore)

Solution 2: hashing (verb from ‘hache’ = hatchet, Germanic)

- Reduce universe \(U\) of all keys (say, integers) down to reasonable size \(m\) for table
- idea: \(m \approx n\), where \(n = |K|\), \(K =\) set of keys in dictionary
• hash function \(h: \mathcal{U} \rightarrow \{\emptyset, 1, \ldots, m-1\} \)

• think of \(m \) as a number that fits in a machine word
 (if 32 bits, then \(m \) can be up to about a billion, so dictionary can be quite large; if
 that is not enough can use two words, etc.)

\[U \] : universe of all possible keys

\[K \] : actual keys

\[h(k_1) \]

\[h(k_3) \]

\[h(k_2) = h(k_4) \] (collision)

\[\emptyset \]

\[1 \]

\[\text{item1} \]

\[\text{item3} \]

\[\text{problem} \]

\[h(k_2) = h(k_4) \] (collision)

\[m-1 \]

Figure 2: Mapping keys to a table

• two keys \(k_i, k_j \in K \) collide if \(h(k_i) = h(k_j) \)

How do we deal with collisions?

There are two ways

1. Chaining: TODAY

2. Open addressing: NEXT LECTURE
Chaining

Linked list of colliding elements in each slot of table

- Search must go through whole list $T[h(key)]$
- Worst case: all keys in k hash to same slot $\Rightarrow \Theta(n)$ per operation

Simple Uniform Hashing: an Assumption:

Each key is equally likely to be hashed to any slot of table, independent of where other keys are hashed.

- let $n =$ number of keys stored in table, $m =$ number of slots in table
- average \sharp keys per slot $= n/m =: \alpha$ — the load factor
 - Why? Throw n balls into m bins uniformly at random. Average $\#$ balls/bin is $\frac{n}{m}$.

Expected performance of chaining: assuming simple uniform hashing

- Expected time to search $= O(1 + \alpha)$
 - pay 1 to apply hash function and access slot; then pay α to search the list.
- Expected time to insert/delete $= O(1 + \alpha)$

\Rightarrow the performance is $O(1)$ if $\alpha = O(1)$ i.e. $m = \Omega(n)$.
Two Concrete Hash Functions

Division Method: $h(k) = k \mod m$

- k_1 and k_2 collide when $k_1 \equiv k_2 \pmod{m}$, i.e. when m divides $|k_1 - k_2|$
- fine if keys you store are uniform random (probability of collision=1/m)
- but if keys are $x, 2x, 3x, \ldots$ (regularity) and $x \& m$ have common divisor d then use only $1/d$-th of the table. **Because** $i \cdot x \equiv (i + \frac{m}{d}) \cdot x \pmod{m}$. (This is likely if m has a small divisor, e.g. 2)
- if $m = 2^r$ then only look at r bits of key!
- **Good Practice:** m is a prime number & not close to a power of 2 or 10 (to avoid common regularities in keys)
- **BUT:** Inconvenient to find a prime number; division slow.

Multiplication Method: [Look at figure first]
$h(k) = [(a \cdot k) \mod 2^w] \gg (w - r)$, where

- \gg denotes the “shift right” operator,
- 2^r is the table size ($= m$),
- w the bit-length of the machine words,
- and a is chosen to be an odd integer between $2^{(w-1)}$ and 2^w.

Good Practice: a not too close to $2^{(w-1)}$ or 2^w.

Key Lesson: Multiplication and bit extraction are faster than division.

![Figure 4: Multiplication Method](image-url)