
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology September 15th, 2009
Professors Srini Devadas and Constantinos (Costis) Daskalakis Handout 2

Problem Set 1
This problem set is divided into two parts: Part A problems are theory questions, and
Part B problems are programming tasks.

Part A questions are due Tuesday, September 22nd at 11:59PM.
Part B questions are due Thursday, September 24th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or
scanned handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct
solution which is described clearly. Convoluted and obtuse descriptions might receive
lowmarks, even when they are correct. Also, aim for concise solutions, as it will save you
time spent on write-ups, and also help you conceptualize the key idea of the problem.

Part A: Due Tuesday, September 22nd

1. (18 points) Asymptotic Growth

For each group of six functions below, rank the functions by increasing order of
growth; that is, find an arrangement g1, g2, . . . , g6 of the functions satisfying g1 =
O(g2), g2 = O(g3), . . . , g5 = O(g6). Partition each list into equivalence classes such
that f(n) and g(n) are in the same class if and only if f(n) = Θ(g(n)).

(a) (6 points) Group 1:

f1(n) = 106006n2, f2(n) = 1/n, f3(n) = n6.006

f4(n) = n, f5(n) = 1/6.006, f6(n) = 6.006n

(b) (6 points) Group 2:

f1(n) = n log n, f2(n) = log(log(n)), f3(n) =
(

n
50

)

f4(n) = n1/50, f5(n) = log(n), f6(n) = log(
√

10n)

(c) (6 points) Group 3:

f1(n) = 2n, f2(n) = n2n, f3(n) = 2n+1

f4(n) = 4n, f5(n) = n!, f6(n) = 3
√

n

2. (12 points) Binary Search

Binary search is a fast algorithm used for finding membership of an element in a
sorted list. The iterative version of the algorithm is given below. The function takes
a sorted list of numbers, alist, and a query, item, and returns true if and only if
item ∈ alist. Let n denote the length of the list alist.



2 Handout 2: Problem Set 1

def binarySearch(alist, item):
first = 0
last = len(alist)-1
found = False

while first<=last and not found:
midpoint = (first + last)/2
if alist[midpoint] == item:

found = True
else:

if item < alist[midpoint]:
last = midpoint-1

else:
first = midpoint+1

return found

(a) (5 points)What is the runtime of the iterative version in terms of n, and why?

(b) (7 points)Write a concise proof of correctness for the algorithm.

3. (20 points) Uncoordinated Peak Finding

Consider the Peak finding problem discussed in lecture (also refer to Problem 1 in
Part B). An excited 6.006 student comes up with the following algorithm to solve the
problem:

1 Let n = len(row(B)). Find the maximum element of the (n/2)th column and call
it cmax = B[i][n/2]

2 If cmax ≥ B[i][n/2 − 1] and cmax ≥ B[i][n/2 + 1] return cmax

3 If cmax < B[i][n/2 − 1] then B = B[1..n][1..n/2-1] else B=B[1..n][n/2+1..n]

4 Find the maximum element of the (n/2)th row of B and call it rmax = B[n/2][j]

5 If rmax ≥ B[n/2 − 1][j] and rmax ≥ B[n/2 + 1][j] return rmax

6 If rmax < B[n/2−1][j] then B = B[1..n/2-1][1..n/2-1] else B=B[n/2+1..n][1..n/2-
1]

7 goto Step 1.

(a) (10 points)Give a counterexample (an instance of B of size less than 7×7) where
the above algorithm fails to find a peak in B even though it exists.

(b) (10 points) We can fix the above algorithm by keeping track of the running
maximum runmax as below. Explain how it solves the problem in the previous
counterexample.



Handout 2: Problem Set 1 3

1 runmax = −∞
2 Let n = len(row(B)). Find the maximum element of the (n/2)th column and
call it cmax = B[i][n/2]

3 If cmax ≥ runmax then

4 If cmax ≥ B[i][n/2 − 1] and cmax ≥ B[i][n/2 + 1] then return cmax

5 If cmax < B[i][n/2 − 1] then runmax = B[i][n/2 − 1] else runmax =
B[i][n/2 + 1]

6 If cmax < B[i][n/2−1] then B = B[1..n][1..n/2-1] else B=B[1..n][n/2+1..n]

7 Else /* Update B to be the partition of B containing runmax */

8 If runmax ∈ B[1..n][1..n/2−1] then B = B[1..n][1..n/2-1] else B=B[1..n][n/2+1..n]

9 Find the maximum element of the (n/2)th row of B and call it rmax =
B[n/2][j]

10 If rmax ≥ runmax then

11 If rmax ≥ B[n/2 − 1][j] and rmax ≥ B[n/2 + 1][j] return rmax

12 If rmax < B[n/2 − 1][j] then runmax = B[n/2 − 1][j] else runmax =
B[n/2 + 1][j]

13 If rmax < B[n/2−1][j] then B = B[1..n/2-1][1..n/2] else B=B[n/2+1..n][1..n/2]

14 Else /* Update B to be the partition of B containing runmax */

15 If runmax ∈ B[1..n/2][1..n/2 − 1] thenB = B[1..n/2][1..n/2-1] else B =
B[n/2+1..n][1..n/2-1]

16 goto Step 2.

Part B: Due Thursday, September 24th

1. (50 points) Peak Finding

Consider an array A containing n integers. We define a peak of A to be an x such that
x = A[i], for some 0 ≤ i < n, with A[i− 1] ≤ A[i] and A[i] ≥ A[i + 1]. In other words,
a peak x is greater than or equal to its neighbors in A (for boundary elements, there
is only one neighbor). Note that A might have multiple peaks.

As an example, suppose A = [10, 6, 4, 3, 12, 19, 18]. Then A has two peaks: 10 and 19.

Note that the absolute maximum of A is always a peak, but it requires Ω(n) time to
compute.

• (20 points) Write quick find 1d peak to compute any peak of array A in
O(log(n)) time using the algorithm described in the lecture.

Now consider a two dimensional matrix B of integers of size n × n. We define
neighborhood of an element x = B[i][j] as B[i + 1][j], B[i − 1][j], B[i][j + 1] and
B[i][j − 1]. For elements at the boundary, we consider only three neigbors and for



4 Handout 2: Problem Set 1

elements on the 4 corners, only two neighbors are considered. x is defined to be a
peak of B if and only if it is greater than or equal to all of its neighbours. Note that
the maximum element of B is a possible solution for x but that requires Ω(n2) time.

For python coding help, the O(n log(n)) algorithm described in the lecture is pro-
vided as medium find 2d peak.

• (30 points) Write quick find 2d peak to compute any peak of array B in
O(n) time using the algorithm described in the lecture.


