- Reducing $Ax-b$ to a triangular form while preserving $\|Ax-b\|_2$
- Illustration of numerical issues
- More general problems: adding LS constraints, eigenvalues; the details in 6.337 / 18.335
- If A does not have this structure, we will transform it and \(r \) so \(A \) is \([\overline{r}] \) while preserving \(\Sigma r_i^2 \), so we end up with the optimal.

-Trick 1 (of 2): mix pairs of rows to introduce one zero at a time to matrix while preserving \(\Sigma r_i^2 \).

\[
\begin{bmatrix}
A_i
\end{bmatrix}
\begin{bmatrix}
x_i
\end{bmatrix} -
\begin{bmatrix}
b_i
\end{bmatrix}
\equiv
\begin{bmatrix}
-A_{i-1}
\vdots
-A_{m-1}
\end{bmatrix}
\begin{bmatrix}
x_{i-1}
\vdots
x_n
\end{bmatrix}
-
\begin{bmatrix}
b_{i-1}
\vdots
b_m
\end{bmatrix}
\]

\[
\begin{bmatrix}
-A_{i-1}
\vdots
-A_{m-1}
\end{bmatrix}
\begin{bmatrix}
b_{i-1}
\vdots
b_m
\end{bmatrix}
\overset{s}{\rightarrow}
\begin{bmatrix}
A_{i-1}
\vdots
A_{m-1}
\end{bmatrix}
\begin{bmatrix}
b_{i-1}
\vdots
b_m
\end{bmatrix}
\begin{bmatrix}
ca_{m-1}+sca_{m}
\vdots
ca_{m-1}+sca_{m}
\end{bmatrix}
\begin{bmatrix}
cb_{m-1}+scb_{m}
\vdots
-cb_{m-1}+scb_{m}
\end{bmatrix}
\]

Let's find \(c, s \) such that position \((m,1)\) becomes zero.

We have two constraints:

\[-Sa_{m-1, 1} + ca_{m, 1} = 0\]
\[(cr_{m-1} + sr_{m})^2 + (-sr_{m-1} + cr_{m})^2 = r_{m-1}^2 + r_m^2\]
\[(c^2 + s^2)r_{m-1}^2 + (s^2 + c^2)r_m^2 = r_{m-1}^2 + r_m^2\]
\[c^2 + s^2 = 1\]

and \(c = \frac{Sa_{m-1, 1}}{a_{m, 1}} \) or \(s = \frac{ca_{m, 1}}{a_{m-1, 1}} \).

Solve the quadratic in \(c \) (or \(s \)) and we are done.
- Trick 2: Use trick 1 to create more and more zeros in A without destroying earlier ones (or while destroying just a few in more advanced versions).

\[
\begin{bmatrix}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\rightarrow
\begin{bmatrix}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\begin{bmatrix}
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\vdots & \vdots & \vdots \\
\end{bmatrix}
\]

- This algorithm is called the Givens QR factorization (we factored $A = Q_1Q_2\cdots Q_K R = QR$, Q orthonormal and upper triangular).

- Complexity: $O(n)$ operations per rotation

 $O(nm)$ rotations

 $O(mn^2)$ operations total.

- Numerical issues:

 - Avoid divisions by 0 (or by small numbers) when computing c, s. This is easy.

 - Zero in a_{ii}: set x_i arbitrarily (e.g. $x_i=0$) because $r_i = b_i$ anyway. Then go on.

 Small nonzeros a_{ii} are hard to deal with; advanced
Solving Sparse Least Squares Problems

In the smooth-function reconstruction problem, A has plenty of zeros to begin with; we can exploit that,

Evolution of the non-zero structure of the matrix
Order of elimination
Order of filling in

For this problem, if we only constrain the values of f(x) at a constant # points, total cost is O(N).

There are clever elimination-ordering algs for other sparsity patterns, for general sparse matrices, and for other factorizations.
Additional issues in Givens Rotations

- Solving a quadratic \(ax^2 + bx + c = 0 \)
 \[x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

- Make \(-b\) and \(\pm \sqrt{b^2 - 4ac}\) have same sign;
 avoid subtracting large #’s to recover a small difference

- The choice boils down to which of 2 rotations to use:

- In Python:
 \[x = 1.0 \]
 \[y = 1e-17 \]
 \[x + y - x \implies 0.0 \]
 \[x - y + y \implies 1e-17 \] (floating point arithmetic is not commutative; other axioms that hold)