Admin: (No recitations tomorrow—Thanksgiving!)

Reading: CLRS §34.3, pages 984-985

Outline: Special lecture on reductions

☐ intro
☐ VC ≤p clique
☐ MSSP ≤p SSSP
☐ SAT ≤p VC
Reductions

"Problem" maps inputs to outputs (e.g. function or predicate)

E.g. product of two matrices ← function
is graph connected? ← predicate (T/F)

is formula satisfiable?

We are interested in relation between problems.

In particular, can we solve problem A using procedure for problem B?
I.e. can we reduce A to B?

Notation: $A \leq B$ for such a reduction

Several different flavors of such reduction...

Suppose A maps x to $A(x)$

B maps y to $B(y)$

Figure:

```
\begin{tikzpicture}
  \node (A) at (0,0) {A};
  \node (B) at (2,-2) {B};
  \node (A_x) at (0,-2) {A(x)};
  \node (y) at (2,-3) {y};

  \draw[->] (A) -- (B);
  \draw[->] (A_x) -- (B);
  \draw[->] (B) -- (A_x);
  \draw[->] (A_x) -- (y);
\end{tikzpicture}
```
Considerations:

- Are A & B functions or predicates?
 (works either way, just need to be clear)

- Is there a bound on reduction work (exclusive of calls to B?)
 Typically want this to be "small"

- Is A=B? ("self-reduction" to smaller problem instances, e.g. mergesort or dyn. programming or gcd)
 We'll ignore self-reduction today...

- Is B used once, or multiple times, for a single input to A?

- Is reduction a "mapping reduction"? That is, reduction has form
 \[A(x) = B(f(x)) \]
 We map x to f(x), then apply B once, and take answer from B as final output for A(x).
 Many common reductions are mapping reductions.

- Notation: \(A \leq_m B \) mapping reduction

 \(A \leq_p B \) polynomial time mapping reduction (aka "Karp reduction")

 \(A \leq_T B \) "Turing reduction" (can call B many times)

 \(A \leq_{Cook} B \) "Cook reduction": polynomial time Turing reduction (can call B many times)
Motivations for studying reductions

1. **Better upper bounds**
 If we show $A \leq B$ via an efficient reduction, and we have an efficient algorithm for B, then we have an efficient algorithm for A.

2. **Lower bounds**
 If we show $A \leq B$ via an efficient reduction, and we have reason to believe A is hard, then we have reason to believe B is hard.

(Used in computational complexity theory and theory of NP-completeness.)
Example: \(A = \) does input graph \(G \) of \(n \) vertices contain a vertex cover of size \(k \)?

\(B = \) does input graph \(G \) of \(n \) vertices contain a clique of size \(l \)? (clique = \(l \) mutually adjacent vertices)

\[\Delta \quad \Box \quad \ldots \]

\(l = 3 \quad l = 4 \)

Claim: \(A \leq_p B \) (poly-time mapping reduction)

Proof: Given \(G = (V, E) \) and \(k \), map to \(G' = (V, \overline{E}) \) and \(l = n-k \)

where \(\overline{E} \) is complement of \(E \).

(Can reverse to show \(B \leq_p A \) as well.)
Fact: Vertex cover is “NP-hard”

Fact: If A is NP-hard \& A \leq_p B, then B is NP-hard.

\[\therefore \text{Clique problem is NP-hard (actually, NP-complete)} \]

(NP-hard \equiv at least as hard as satisfiability of Boolean formula, SAT \equiv I, e. SAT \leq_p A if A NP-hard.)

(NP-complete \equiv NP-hard \& solvable in nondet polynomial time...)

Fact: If A \leq_p B \& B \leq_p C, then A \leq_p C.

Example:

\[A = \text{mult-source shortest path} : \text{given } G=(V,E) \text{ with edge weights } w \& \text{ start vertices } s_1, s_2, ..., s_k \& \text{ target vertex } t, \text{ find shortest path from } \text{ some start to target } t. \]

\[B = \text{std SSSP}. \]

\[A \leq_p B \]
Proof:

\[G' \]

\[\text{shortest path in } G' \text{ from } s \rightarrow t \]

\[\text{yields shortest } s_i \rightarrow t \text{ path in } G. \]

Thus, good alg for SSSP yields good alg for M SSP (since reduction is efficient).

Emphasize: Reduction by itself \(A \leq_p B \) doesn't solve \(A \) or \(B \), it just relates \(A \) to \(B \).

You have to know that \(A \) is hard, or that \(B \) is easy, for this to be meaningful.
Thm \[\text{SAT} \leq^p \text{VC (vertex cover)} \]

Given \(\Psi = (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (x_1 \lor x_2 \lor x_3) \),

\[\downarrow \text{transform to } G \]

\[\overline{x_1}, x_1, x_2, x_3 \]

\[x_1, x_2, x_3, x_3 \]

\[\text{draw edge if incompatible or in same clause} \]

Look for V.C. of size \(L - C \)

\[\Rightarrow \text{C vertices with no edges} \]

\[\Rightarrow \text{must be one from each clause} \]

\[\Rightarrow \text{satisfying assignment} \]

\[\text{(This suffices to show VC is NP-hard...)} \]