Admin:

Reading: CLRS 15.1-15.4

Outline: Dynamic Programming (2/4)
- Review DP concepts
- Longest path in a DAG
- Longest common subsequence
- Picking up pennies
Review Dyn. Prog. concepts

• Typically, an optimization problem that can be solved recursively.
• Recursive calls generate similar subproblems.
• Subproblem dependence graph. (DAG: no cycles!)
 \[V = \text{set of subproblems} \]
 \[E = \{ x \to y : \text{solving } x \text{ involves calling for } y \text{'s solution} \} \]

• Two approaches:
 1. "Top-down" (recursive) implementation, but
 "memoizing" solutions to subproblems as they are solved
 \[\text{DFS} \]
 2. "Bottom-up": sort \(V \) in reverse topological order,
 solve subproblems in that order, save solutions as
 subproblems are solved.

• Solution time is typically \(\Theta(V + E) \), assuming that
 solving a subproblem is linear in number of recursive
 calls it makes (i.e., in \# of outgoing edges it has).
Longest Path in a DAG

- Find longest \(S \rightarrow T \) path in given DAG \(G=(V,E) \)

Diagram:

- Subproblem for each vertex \(u \):
 - What is length of longest \(u \rightarrow T \) path, and
 - What is first vertex (after \(u \)) on this path?

 ("single destination" rather than "single source"—we've turned things around for convenience, no big deal.)

- **Equation:**
 \[
 d[u] = \max_{(u,v) \in E} \left(w(u,v) + d[v] \right) \quad \text{(but } d[t] = 0) \]

- Do DFS on \(G \), starting at \(S \),
 - Save ("memoize") \(d[u] \) when \(u \) "finished".
 - (Illustrate)
 - Time is \(\Theta(V+E) \)

- Can find "critical path" in project ("PERT chart") similarly
 \[
 d[u] = w(u) + \max_{(u,v) \in E} \left[d[v] \right] \quad \text{(but } d[t] = w(t))
 \]

where \(w(u) = \text{time to complete task } u \) on its own.
"Picking up pennies"

Given a DAG $G = (V,E)$, where some edges have pennies on them & some don't, find path from given start vertex with most pennies.

This is just longest path problem, where length of edge = # of pennies on it!
Longest Common Subsequence (LCS)

- **Apps:** "edit distance", "diff", spell-checking, DNA comparison, document distance (new def.), plagiarism detection, etc.

- **Given two strings/sequences** x and y, **find a longest common subsequence** (elements in some order but not nec. continuous)

- **Example:** $x = \text{CATG}$ or $x = \text{CATG}$

 $y = \text{ACGT}$ or $y = \text{ACGT}$

 $z = \text{LCS}(x,y) = \text{AC}$ or $z = \text{LCS}(x,y) = \text{CG}$

 (may be more than one LCS)

- **Naive brute force:** try all $2^{|x|}$ subsequences of x

 see if it occurs in y

 time = $\Theta (2^{|x|} \cdot |y|)$

- **Consider "chopping game" - try to maximize # points**

 Given two strings, do a sequence of moves until nothing is left.

 Move = drop 1st char of x (0 pts)

 CATG or CATG

 or drop 1st char of y (0 pts)

 ACGT or ACGT

 or drop 1st char of x&y (1 pt if same char dropped else 0 pts)

- **Claim:** max score achievable = length of LCS

 (Just take letters corresponding to points achieved.)
• State of game = subproblem
 = pair of suffixes \((x[i:], y[j:])\)
 after having dropped \(i\) from \(x\) & \(j\) from \(y\)

• Draw subproblem dependence graph

\[
\begin{array}{cccccc}
X & C & A & T & G \\
0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
Y & A & C & G \\
0 & 1 & 2 & 3 & 4 \\
\end{array}
\]

\[
\begin{array}{cccccc}
\rightarrow &=& \text{drop \(x\)} & \Rightarrow \text{all edges have 0 weight} \\
\downarrow &=& \text{drop \(y\)} & \Rightarrow \text{except for \(\downarrow\) with \(x[i] = y[j]\)} \\
\rightarrow &=& \text{drop both} & \Rightarrow \text{want longest path (!)} \\
\end{array}
\]

Time = \(\Theta(V+E) = \Theta(|x|\cdot|y|)\)

Space = \(\Theta(|x|\cdot|y|) \Rightarrow \Theta(\min(|x|,|y|))\)
 just to find length
do by rows, or columns