Outline: Hashing I

- Intro
- motivation: docdist, DNA
- direct addressing
- hash functions - general idea
- chaining for collision resolution; analysis
- specific hash functions

Reading: CLRS Chaps 11.1-11.3

Intro: How are python "dictionaries" implemented?

Recall: \(d = \{\}
\)
\[
d["ab"] = 5
\]
\[
d[7] = "the"
\]
"ab" in d → True

\[
d.items() → [("ab", 5), (7, "the")]
\]
\[
del d[7]
\]

operations: create empty dict
insert (key, value)
delete (key)
search (key)

in time \(\Theta(1) \) per operation

How is it done??

(BST would have time \(\Theta(\lg n) \),…)
(BST effectively maintains a sorted list in a clever way; we
can't afford sorting here...)
Motivation: Document Distance

```python
def count_frequency(word_list):
    D = {}
    for word in word_list:
        if word in D:
            D[word] += 1
        else:
            D[word] = 1
```

Rivest

L5.2

9/18/08

[new "docdist7" uses dictionaries instead of sorting:

```python
def inner_product(D1, D2):
    sum = 0
    for word in D1:
        if word in D2:
            sum += D1[word] * D2[word]
```

⇒ optimal \(\Theta(n) \) docdist program

assuming basic operations are \(\Theta(1) \) time

Motivation: PS2

How close is chimp & human DNA?

⇒ What is longest common substring of two strings?

algorithm vs arithmetic length 5
dictionaries can help speed this up

(put all substrings of length \(k \) into dict, look
for duplicates from \(k \)-length substrings of other string
search over \(k \))
Ideal: array accessing

- Assume keys are in range 0..m-1
- Use key as index into table

\[
D \quad m = 8
\]

\[
\begin{array}{c}
D[2] = X \\
D[5] = Y
\end{array}
\]

array access takes \(O(1)\) time: insert, delete, search
enumerate takes time \(\Theta(m)\)
(proportional to length of table, not \(n\) of keys, but we'll try to keep \(m = n\) later...)

What if keys are not small integers?

Suppose they are from some large set \(U\)?

e.g. \(U = \) set of length-20 strings over alphabet A,T,G,C
\(U = \) credit card #’s
\(U = \) english words

Solv: define a "random-looking" function

\((\text{idea}) \quad h: U \rightarrow \{0,1,\ldots,m-1\}\)

store \(x\) in \(T[h(x)]\)

(e.g. in Python: \(\text{hash}(x)\) gives 32-bit integer,
\(h(x) = \text{hash}(x) \mod m\) can be used.)

Note: \(x\) can't be "mutable," else its location would have to change. \(\text{hash}((2,3))\) ok, \(\text{hash}([2,3])\) not
Two issues:
1. how to compute \(h(x) \) ?
2. what if we have a "collision"?
 \(x \neq y \) but \(h(x) = h(y) \)

Do 2 first:
- chaining: today
- open addressing: next week

Chaining:
- table \(T[0..m-1] \) as before
- \(T[i] \) is list of elements that have \(h(x) = i \)

\[h(x_1) = h(x_2) \]
\[h(x_3) = 2 \]

\(T[i] \) could be linked list (as shown), or python list (array);
 python can take care of growing it as needed.

Analysis: (hash \(n \) items into table of size \(m \))
- worst-case is bad: all hash to same position \(i \)

 \(|T[i]| \) has length \(n \)
 operation take time \(\text{O}(n) \)

- So, we'll look at expected time, not W.C. time,
 based on an assumption.
Assumption: ("Simple Uniform Hashing")

⇒ each key is equally likely to hash to
any slot of table, independent of
where other keys are hashed to.

Define: load factor $\alpha = n/m$

= average # keys/slot

\[\text{usually small constant} \quad 0.1 \ldots 10 \]

Expected performance given SUH:

- search/insert/delete

\[
\text{time } O(1 + \alpha)
\]

⇒ to search list $T[i]$↓

⇒ to compute $i = h(x)$

\[= O(1) \text{ if } \alpha = O(1) \text{ i.e. if } m = \Omega(n) \]

[Note: analysis for successful search interesting... see CLRS]

- enumerate:

\[\text{time } O(m+n) \quad \text{(search through } T, \text{ & each list)} \]

\[
\text{= } O(n) \text{ if } m = O(n)
\]

- We'd clearly like $m = \Omega(n)$ and $m = O(n)$ ⇒ $m = \Theta(n)$

 e.g. $n/4 \leq m \leq 4n$ would be nice.

- discuss table resizing next time, show can keep table nicely sized at reasonable cost (without changing our basic results above)
How to compute $h(x)$?

Lots of ways: here's one that's good

assume x is an integer

let m be hash table size

let p be prime, $p \geq m$ (ok if $p=m$ if prime)

pick a: $0 < a < p$

pick b: $0 < b < p$

let

$$h(x) = \left((ax + b) \mod p \right) \mod m$$

not needed if $p=m$

example:

$m = 1,000,000$

$p = 1,000,003$

$a = 314159$

$b = 271828$

If $x = \text{"ATTCATA"}$ treat as base-4 integer

If $x = \text{"weather"}$ treat as base-26 integer

Note: can compute $x \mod p$ as first step: $h(x) = h(x \mod p)$

Note: if p reasonably large, can use same a, b, p

with tables of different size m

See text for other methods (division method, multiplication method).