Runway Reservation System
- Maintains a set R of future landing times
- When a plane lands, remove from the set
- For a request to land at time t:
 - reject request if there are reservations within 3 minutes of t,
 - otherwise add t to set

Example

```
now  41  46  49  56
```

$R = \{41, 46, 49, 56\}$, \ $n = |R| = 4$

request for time:
44 reject (too close to 46 in R)
53 add reservation (just right)
20 already past, not allowed.

Goal: handle requests & landings in $O(\log n)$ time.
- Keeping \(R \) as an (arbitrarily ordered) list

- Checking a request takes \(O(n) \) time

- Deleting upon landing takes \(O(n) \) time

- Keeping \(R \) as a sorted list

 \[
 \text{init: } R = [] \\
 \text{req}(t): \text{if } t < \text{now} \text{ return 'error'} \\
 \quad \text{for } i \text{ in range (len}(R)):\ \\
 \quad \quad \text{if } \text{abs}(t-R[i]) < 3 : \text{return 'error'} \\
 \quad \text{R.append}(t) \\
 \quad \text{R.sort()} \leftarrow O(n \log n) \\
 \text{land: } t = R[0] \\
 \quad \text{if } (t \neq \text{now}) \text{return 'error'} \\
 \quad R = R[1:] \leftarrow O(n)
 \]

- Can we do better with a sorted list?

 \[
 \begin{array}{cccccc}
 37 & 41 & 46 & 49 & 56 & \ \\
 \end{array}
 \]

 can use binary search to determine conflicts in \(O(\log n) \) but inserting \(t \) into \(R \) and deleting \(R[0] \) still takes \(O(n) \)

 \(\Rightarrow \) better (no sorting) but not enough.
- Indicator representations
 - Represent a set R such that $A[t] = \text{True}$ iff $t \in R$

- Python dictionaries
- Python sets
- A Python list of all possible landing times (all possible elements of R)

- Fast insertion, deletion
- Checking a request is fast if landing times are whole minutes, but expensive for hi-res
- Not a flexible data structure:
 How many planes land on or before t?
- Binary Search Trees (BSTs)

1. insert (49)
2. insert (79)
3. insert (46)

A more compact representation:

graphical representation:

find(46): follow left/right pointers until done
find(48): how do you tell that 48 is not in the set?
findmax(): just go right until you can't go right
findmin(): similar, go left

delete min(): min & max nodes will have zero
or one child => find, eliminate, & patch
next-larger(t): u = find(t)
 if right(u)\neq None: return findmin(right(u))
 else: y = parent(u)
 while y\neq None and u = right(y):
 u = y
 y = parent(u)
 return y

- All of these operations on the BST take O(h) time, where h is the height of the tree
- Other operations that we can do in O(h) time:
 rank(t) how many planes land \leq t?
 must augment each node with size of subtree, update during insertions & deletions.
 delet(t) more tricky if t has 2 children, but still O(h).
 (delete next-larger(t) than put it in the node that stored t; see textbook).
- So how high is a binary tree with \(n \) vertices?
- If we're lucky, \(h = O(lg n) \)

\[
h = 3 - lg(n+1)
\]

or

\[
n = 2^h - 1
\]

- But \(h \) can be large, \(h = n \)
Sivan Toledo, 6.006

--- Sorted Lists ---

```python
def sortedlist_init():
    return []

def sortedlist_print(R):
    print R

def sortedlist_insert(R,t):
    R.append(t)
    R.sort()
    return R

def sortedlist_deletemin(R):
    return R[1:]

def sortedlist_runway_insert(R,t):
    for i in range(len(R)):
        if abs(t-R[i]) < 3:
            print 'error: ' + str(t) + ' is too close to ' + str(R[i])
            return R
    R.append(t)
    R.sort()
    return R
```

--- Binary Search Trees ---

```python
def bst_init():
    return None

def bst_insert(T,t):
    if T == None:
        return [None, t, None]
    if t <= T[1]:
        T[0] = bst_insert(T[0],t)
        return T
    else:
        T[2] = bst_insert(T[2],t)
        return T

def bst_str(T):
    if T == None:
        return ''
    return bst_str(T[0]) + ' ' + str(T[1]) + ' ' + bst_str(T[2])

def bst_print(T):
    print '[' + bst_str(T) + ']'
```